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Abstract

In Molecular Dynamics, the rare event of interest can be modeled by the transition of some underlying
Markov process between metastable states. In Transition Path Theory, a very important model reduction tech-
nique is to design a reaction coordinate, which is a function that measures the advance of a reactive trajectory
towards a metastable state. Let A and B be two metastable states. A committor function is the perfect choice of
reaction coordinate in the sense that it measures exactly the probability of reaching B before A. The committor
function is also, in some sense, the perfect reaction coordinate for generalized Adaptive Multilevel Splitting
(gAMS, see [BGG+16]) and crucial to the performances of many other rare-event estimation algorithms. We
investigate the performance of Mondrian Forests (MF) [LRT14] to estimate the committor function, and we
provide strategies to couple gAMS iteratively: �rst, since gAMS can also provide information on the committor
function, we can use this algorithm to generate training data for MF, and, conversely, to update gAMS by using
the trained MF model as its reaction coordinate. As iterations go, the updated-gAMS to generate better quality
data, and with better quality data, MF should yield a good approximation of the committor function.
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1 Introduction
In Transition Path Theory (TPT, see, e.g., [EVE10]), a typical problem is to sample the transition paths between
a metastable state A and another metastable state B (see Figure 1). More precisely, let E denote a state space in
which the underlying dynamics is modeled by a Markov process X := (Xt ; t ≥ 0). A metastable state of X is an
open subset of E such that when X is trapped in such set, it takes an extremely long time for X to escape (see
Figure 1). Let A,B be two metastable sets in E, then the committor function at point x is the probability that X
starting from x , reaches B before A.

A B

R2

Figure 1: Schematic picture of Transition Path Theory.

By the metastability of A and B, when evaluating the values of the committor function close to A, crude
Monte Carlo typically fails because the process is very much likely to go back to A rather than to go to B: the
probability to be evaluated is thus very small. This metastability problem is related to a time scale problem:
although the molecular transitions are not so rare at the macroscopic timescale, the dynamics encoded in the
Markov process can only be simulated w.r.t. femtosecond timescale. Therefore, in order to ensure a certain level
of accuracy, the wall-clock time of simulation is typically intractable.

One popular numerical approach to counter this is the gAMS framework [BGG+16]. The basic idea is to
generate an Interacting Particle System (IPS) based on an adaptive level updating strategy, where the trajectories
that advance more survive. A level is calculated w.r.t. a reaction coordinate, which is of crucial importance to
the performance of the algorithm. It is well-known (see, e.g., [BLR15, CGR19]) that the committor function
is the optimal reaction coordinate for gAMS. In addition, since gAMS is able to evaluate e�ciently the values
of the committor function close to A, the idea of designing a regressor to estimate the committor function is
therefore natural.

An elementary approach is to split the state space E or some compact subset based on a regular grid cells, and
a natural approximation of the committor function can then be derived in each cell thanks to ensemble of paths
generated by the gAMS algorithm. The reader is referred to [LL19] for a rich list of numerical experiments
and a concrete application on alanine dipeptide. However, this natural construction will only work in low
dimensional settings, since it is not possible to create a uniform mesh when the dimension of the state space is
large. Intuitively, a possible generalization of such a method is to �nd an intelligent way to create an adaptive
mesh, such that it may also work in a high-dimensional setting.

Mondrian Forests (MF) [LRT14], a variant of Random Forests (RF), i.e., an ensemble of randomized decision
trees, are proposed as the regressor of committor function. The construction of MF are based on a stochastic
process called Mondrian process (MP, see, e.g., [RT09]), taking values in guillotine partitions of an axis-aligned
box. Roughly speaking, a Mondrian process is a high-dimensional generalization of the partition on an interval
that is split by a Poisson process. Said di�erently, MF provide an intelligent way to create “randomized uniform
mesh” that is tractable in a high-dimensional setting. From a di�erent angle, MF can be regarded as an RF-based
regressor, such that online learning is available. More concretely, when new training data come, there is no
need to retrain the model in order to have a better quality regressor. This property is crucial for our iterative
updating strategy (cf. Figure 2).

Unfortunately, the theoretical understanding of MF are still in its infancy. We refer to [MGS17, MGS18] for
recent theoretical developments on MF, where a Purely Random Forests version of MF are proposed, along with
a min-max convergence rate analysis. Therefore, we mainly provide numerical illustrations and ideas on how
to use MF to design e�cient strategy to estimate the committor function.
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Figure 2: The illustration of iterative updating strategy.

2 Setting

2.1 Overdampled Langevin dynamics
We consider an overdamped Langevin process X = (Xt ; t ≥ 0) taking values in the state space E = Rd de�ned
by

dXt = −∇V (Xt )dt +
√
2β−1dWt , (1)

where (Wt ; t ≥ 0) denotes a d-dimensional Wiener process, V denotes the associated energy and the inverse
temperature (κBT )−1 is denoted by β .

A metastable state is an open subset of E such that when X is trapped in such set, it takes an extremely long
time for X to escape. Let us denote A and B two metastable states in a state space E. For the Markov process
X := (Xt , t ≥ 0), let τA and τB denote respectively the stopping times

τA := inf {t ≥ 0 | Xt ∈ A} ,

and
τB := inf {t ≥ 0 | Xt ∈ B} .

The committor function ξ ∗ : E\(A ∪ B) 7→ [0, 1] is de�ned by

ξ ∗(x) := P (τB < τA | X0 = x) .

Our goal is to design an e�cient strategy to estimate this function on some compact subset of the state space
E. In particular, we are interested in exploiting this estimation to improve the performance of gAMS and vice
versa.

2.2 Ground truth
In this section, we show how one can obtain the reference values of a committor function in overdamped
Langevin dynamics for some low-dimensional toy examples, which will be referred to as ground truth, namely
the “real” values of the committor function. This method only works in low-dimensional setting. It is well
known (see, e.g. [BLR15]) that ξ ∗ is the solution of the following elliptic Partial Di�erential Equation (PDE):

− ∇V · ∇u + β−1∆u = 0 on E\(A ∪ B), (2)

with the boundary conditions {
u = 0 on ∂A;
u = 1 on ∂B.

(2’)

For su�ciently �ne grids, the numerical solution of (2) using Finite Di�erence method is precise enough so that
it can be regarded as the real committor function.

Three-hole potential The main example investigated in this article is the following 2-dimensional poten-
tial function (see Figure 3):

V (x,y) :=3 exp
(
−x2 − (y − 1/3)2

)
− 3 exp

(
−x2 − (y − 5/3)2

)
− 5 exp

(
−(x − 1)2 − y2

)
− 5 exp

(
−(x + 1)2 − y2

)
+ x4/5 + (y − 1/3)2/5.

We consider the following two metastable states respectively de�ned by
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Figure 3: Representation of the three-hole energy landscape.

A := {(x,y) ∈ Rd : (x + 1)2 + y2 < 0.1},

and
B := {(x,y) ∈ Rd : (x − 1)2 + y2 < 0.1}.

The reader is referred to [MSVE06] for a wider list of toy examples. In order to solve the elliptic PDE (2)
by Finite Di�erence method, we consider a rectangular domain Ω = [−2, 2] × [−2, 2] and a uniform mesh with
stepsize 0.01. We also add a Neumann boundary condition on the boundary ∂Ω of the rectangular domain, i.e.,
∂®nu = 0 where ®n denotes the unit normal vector on the boundary. These �ctitious boundary conditions do not
a�ect too much the quality of the result since when starting far from A and B, the di�erence of the values of the
committor function for two close points is negligible. This ensures that the Finite Di�erence result yields an
accurate approximation of the solution to (2)-(2’). The numerical solution of (2)-(2’) for the inverse temperature
β = 1.67 is illustrated in Figure 4.

2.3 On the choice of regressors
The committor function is a smooth function, taking values in [0, 1]. In this sense, any state-of-the-art ma-
chine learning model may serve as a regressor the committor function. However, when interacting with gAMS
methods, certain practical aspects have to be taken into account when choosing the learning method:

• First, the regressor has to be fast in terms of prediction speed. In fact, gAMS algorithm requires that at
each state of each trajectory, the reaction coordinate is evaluated. This is a huge amount of computation
costs if the prediction of the regressor is complicated, and most of them would not be useful. In this sense,
a sophisticated �ne-tuned Deep Learning model may not be a relevant candidate.

• Second, the regressor must be able to execute online learning or incremental learning. When new data
come, the regressor should be able to update in order to have better accuracy. In this sense, classic Random
Forests may not be a good choice.

• Finally, we expect it to be as adaptive and robust as possible in high dimension, since we do not have
much insights on how to tune a speci�c model to learn a high-dimensional function.

As such, we may consider two families of regressors in order to estimate the committor function e�ciently. The
advantages and disadvantages are listed as follows.

(i) Gradient-based learning algorithms, such as logistic regression, XGBoosting, or some shallow neural net-
work:
(a) Online learning is available by a Stochastic Gradient Descent-based optimization algorithm;
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Figure 4: The numerical solution of (2) in a high temperature scheme with β = 1.67.

(b) It is easy to add regularization modules, such as the “smoothness” of the prediction, etc;
(c) The parameters of the algorithm are hard to tune in general;
(d) Sometimes, the results are hard to interpret.

(ii) Ensemble-based learning algorithms, mainly variants of Random Forests:
(a) The ensemble methods are super robust in high-dimensional settings by the design of Monte Carlo-

typed structure;
(b) Nearly no tuning is needed, which also means that the regularization modules are not easy to im-

plement in general;
(c) Online learning is generally di�cult to design;
(d) It is straightforward to understand and control possible dangerous situations.

3 A brief introduction to Mondrian Forests
Mondrian Forests (MF) were introduced in [LRT14], named after the famous Dutch painter Piet Mondrian, as the
partitions created by each Mondrian tree (MT) and Mondrian’s paintings have similar style. The crucial idea of
the construction is based on a guillotine-partition-valued stochastic process called the Mondrian Process (MP).
For details, the readers are referred to [RT09] and [BW15]. In general, MF are a variant of RF such that online
learning is available, and designed in a smart way. In this section, we present the basic mechanism of a Mondrian
tree and we explain why MF are a competitive candidate as a regressor for estimating the committor function.

3.1 The mechanism of a Mondrian tree
In this section, we provide an intuitive interpretation on the construction of a Mondrian tree on a 2-dimensional
toy example. For the generic algorithm, the reader is referred to [LRT14]. Let us �x a parameter λ ∈ R ∪ {+∞},
which de�nes the lifetime of a Mondrian tree. Let us denote by (Xi ,Yi ; 1 ≤ i ≤ n) the training data. Before
starting, we remark that the partition de�ned by a MT only depends on the inputs (Xi ; 1 ≤ i ≤ n) of the training
data.

Construction of MT in dimension 2 At step 0, we denote ABCD the minimum rectangle that covers
X1,X2, . . . ,Xn (see Figure 5). Then, we sample an exponential random variable E0 with rate (|AB | + |BC |). If
E0 < λ, a split on the sideAB or BC will be executed. More precisely, we sample a uniform random variableU on
the interval [0, |AB | + |BC |]. IfU ≤ |AB |, a splitting point will be uniformly sampled on the side AB; otherwise,
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the split will be done on the side BC . After the splitting point is determined, a split will be executed orthogonally
to the chosen side. For short, this amounts to say that an orthogonal split is performed uniformly on ABC . In
Figure 5, the splitting point is on the side AB and its abscissa is denoted by x0. Therefore, the training data is
vertically divided into two subgroups.

×

×

××

× ×

×

××

A B

D C

x0

Figure 5: First split in the construction of MT.

At the same time, a node in a decision tree according to the split is therefore constructed (see Figure 6).
By de�nition, the condition node x > x0 illustrated in Figure 6 can be determined by the pair of sets ({x >
x0}, {x ≤ x0}). We say that the lifetime of the node ({x > x0}, {x ≤ x0}) is E0. Note that a decision tree
uniquely determines a partition on the whole state space R2.

t = 0

x > x0

lifetime: λ

E0

Figure 6: Decision tree corresponding to the �rst split.

Next, we perform the splitting for these two subgroups of data recursively. Let us start by the subgroup
of data on the left-hand side (see Figure 7). Denote again by ABCD the minimum rectangle that covers all the
data in this subgroup of data. We sample E11 w.r.t. an exponential distribution with rate (|AB | + |BC |). Now, if
E0 + E11 < λ, we perform a uniform split on BCD, in the same way as presented at step 0. The same mechanism
is applied mutatis mutandis to the right-hand side (see Figure 8). The associated decision tree is also updated
accordingly, and one tracks the lifetime of each node (see Figure 9).

The splitting procedure stops when the lifetime of the proposed condition node surpasses the pre�xed life-
time λ. We also remark that, when a subset contains only 1 data, the splitting stops automatically since the
minimum rectangle that contains one point degenerates to a point. In the �nal stage, a randomized decision
tree is therefore constructed, along with a random partition of the state space R2. In a high-dimensional setting,
the orthogonal lines used to execute the splitting procedures are replaced by hyperplanes, and the rectangles
are replaced accordingly by hypercubes. The basic mechanism remains the same. The prediction of MT is then
provided following the decision tree. More precisely, the prediction on the point x∗ is de�ned as the average
of the outputs of the training data that are in the same hypercube as x∗. The online learning of MT exploits
the memoryless property of exponential distribution. Indeed, when new data come, one regenerates part of the
decision tree such that the existing structure is not changed. It turns out that the online training of a Mondrian
tree does not change its posterior distribution given the same data (cf. (4)), and the reader is referred to Section
5 of [LRT14] for detailed algorithms.
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Figure 7: Second split in the construction of MT.
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Figure 8: Second and third splits in the construction of MT.

t = 0

x > x0

life time: λ

E0

y > y11E0 + E
1
1

t

x > x21E0 + E
2
1

Figure 9: The decision tree with three splits.
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3.2 Theoretical aspects of MF
In this section, we provide some theoretical properties of MF, highlighting the missing part in the theory.

Properties of Ensemble methods MF are ensemble methods, meaning that many weak regressors are
constructed independently and we use the average of their predictions as the �nal estimation. Here, these weak
regressors are Mondrian trees: they are variants of classic decision trees used in Random Forests. Denote by
D[n] = (Di ; 1 ≤ i ≤ n) = (Xi ,Yi ; 1 ≤ i ≤ n) a sequence of training data. We also denote T1(D[n]), · · · ,TM (D[n])
a collection of conditional i.i.d. Mondrian trees. We denote PredTm

(
x

�� D[n]) the prediction at point x made by
Tm (D[n]). Then, the �nal prediction is

PredT[M ]
(
x

�� D[n]) := 1
M

M∑
m=1

PredTm
(
x

�� D[n])
Hoe�ding inequality and Borel-Cantelli lemma give the following law of large numbers as the prediction is
uniformly bounded by 1 for the committor function estimation problem:

PredT[M ]
(
x

�� D[n]) a .s .
−−−−−→
M→∞

E
[
PredT1 (x)

�� D[n]] .
At the same time, we have

Var
[
PredT[M ]

(
x

�� D[n])] = 1
M

Var
[
PredTm

(
x

�� D[n])] .
The �nal prediction is then more consistent than the prediction made by each regressor. Hence, M can be set
as large as possible in practice such that we only have to deal with the randomness introduced by a single MT.

Missing parts in the convergence analysis As is shown above, the variance brought by ensemble
methods can be reduced simply by adding more MT in MF. However, for the expectation of the prediction
provided by MT given data, the consistency is not guaranteed in general. Let us give a more detailed setting.
Assume that the distribution of Di writes, 

Xi ∼ Unif(Ω);
ϵi ∼ N(0,σ 2i );
Yi = ξ

∗(Xi ) + ϵi ,

there is no theoretical guarantee such that

E
[
PredT1 (x)

�� D[n]] a .s . or P or Lp
−−−−−−−−−−−−→

n→∞
ξ ∗(x). (3)

The assumption that ϵi is Gaussian is quite natural since both crude Monte Carlo and gAMS provide estimation
with normal limit distribution. Recent results [MGS17] show that when λ < +∞, there is no consistency in
general. A more re�ned analysis and a variant of Purely Random Forests version of MF are proposed in [MGS18],
with a min-max rate for α-Hölder functions. However, we did not use this variant since the construction of the
purely random Mondrian tree allows empty cell, and 0 is set to be the estimation when the evaluation is needed
to be conducted in such cells. This induces problems in the implementation of gAMS algorithm since ξ = 0
means a sudden death of a transition path, which makes the implementation of gAMS numerically unstable.

Since providing a huge amount of training data is not possible due to the computational cost of gAMS
methods, we are more interested by the performance when relatively few training data is provided. Hence,
asymptotic properties such as consistency are not the priority for the applications in order to improve the
performance of gAMS, since the �nal estimation of rare-event simulation is eventually estimated by gAMS, and
even with non-converged estimation of committor function, we still have a theoretical-guaranteed unbiased
estimator. In addition, since the construction of decision tree-type regressor ensures that the estimator can only
take �nite values, gAMS enters into Asymmetric SMC framework introduced in Chapter 3 and can also provide
theoretical guaranteed consistent estimations.

Self-consistency of MT The online training of each MT does not depend on the arrival orders of Di =

(Xi ,Yi ). More precisely, we have

Tm (D[n+1]) ∼ Tλ(D[n+1]) ⇐

{
Tm (D[n]) ∼ Tλ(D[n]);
Tm (D[n+1])

��� Dn+1 ∼ MDn+1

(
Tm (D[n]), ·

)
,

(4)

where MDn+1 represents the online updating strategy of Mondrian tree given the data Dn+1 and Tλ(D[n])
denotes the distribution of Mondrian tree with lifetime λ given the dataD[n]. According to the author of [LRT14],
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this is the only construction of decision tree available such that the property above is veri�ed. However, this
beautiful property comes with a cost: the splits of the MF do not use the value of the Yi . Therefore, they are not
the “optimal” splits given the training data used in classical decision tree’s construction. Hence, the robustness
over the “extremely bad quality data” will be a�ected. This will be discussed in the numerical illustration in the
next section.

4 Numerical illustrations
In this section, we provide some numerical illustrations and interpretations on the estimation of committor
function. The energy is set to be the three-hole energy introduced in Section 2.2. In the following sections, the
sample points are uniformly sampled in the rectangle Ω = [−2, 2] × [−2, 2], and by “perfect training data” we
mean the numerical solution of (2) given by Finite Di�erence methods.

4.1 Learning with perfect data
Unlike the typical estimation problems in statistics and machine learning context, the quality of the training
data is indeed controllable in the committor function estimation problem. Although it is of no practical interest
to do this kind of trade-o�, we investigate the performance of training MF with perfect data (ground truth) to
test its adequacy and to have an idea on how many data is needed to provide reasonable approximations. The
results are given in Figure 10.

Figure 10: Learning with the ground truth, where the training data is uniformly sampled over Ω =
[−2, 2] × [−2, 2]. For the parameters of MF, we set λ = ∞ and M = 50. The inverse temperature is
β = 1.67.

4.2 Learning with noisy data
Now, we consider adding some arti�cial Gaussian noise to the training data. For a gAMS algorithm withN = 100
and K∗ = 20, the typical variance over the rectangle Ω is between 10−6 to 10−4. Therefore, we consider adding
a slightly larger centered normal noise with variance 4 × 10−4. The results are shown in Figure 11. Although
it seems that MF cannot handle the situation perfectly, the approximation is still quite impressive. Since the
added noises are i.i.d. normal random variables, the relative variance on the left (x ≤ 0) is noticeably larger than
on the right (x ≥ 0). This is why the estimation quality on the left is worse than on the right in general. The
situation where the noise is relatively large is presented in Figure 12. We use the possibly largest variance, 1,
that can be made by crude Monte Carlo or gAMS. This time, unsurprisingly, MF failed to provide reasonable
predictions.
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Figure 11: Learning with slightly perturbed data, where (Xi ) are uniformly sampled over Ω = [−2, 2] ×
[−2, 2]. For the parameters of MF, we set λ = ∞ and M = 50. The inverse temperature is β = 1.67.
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Figure 12: Learning with largely perturbed data, where (Xi ) are uniformly sampled over Ω = [−2, 2] ×
[−2, 2]. For the parameters of MF, we set λ = ∞ and M = 50. The inverse temperature is β = 1.67.

4.3 Capability of recovering from a ruined model
By a “ruined model” we mean the model generated using extremely low quality training data. We start by
training a MF model with largely perturbed data, and then, we continue by providing perfect data to the MF
model, to see if it could recover from the ruined model. As presented in Figure 13, it may be di�cult for an
MF model to recover from a ruined one, meaning that a huge amount of high quality training data is required.
According to Figure 10, a high quality training data of size 1000 is enough to provide an accurate approximation.

Figure 13: The �gure on the left represents the prediction made by a MF model trained by 100 largely
perturbed data. The one on the right represents the model trained with 1000 more perfect data. (Xi ) are
uniformly sampled over Ω = [−2, 2] × [−2, 2]. For the parameters of MF, we set λ = ∞ and M = 50. The
inverse temperature is β = 1.67.

4.4 Conclusion of the numerical tests
In this section, we summarize the empirical knowledge on MF that we have collected in the numerical tests:

(i) MF do not need a huge sample size to give a reasonable approximation of committor functions;
(ii) MF prefer having less high quality data rather than more low quality data;

(iii) MF are not robust to largely perturbed data;

11



(iv) It is di�cult for a ruined MF model to recover by updating through online learning with high quality
training data.

As a consequence, in the design of the iterative updating strategy mentioned in the previous sections, it is
crucial to ensure the quality of the training data for MF. This intuition is contrary to the one in typical Machine
Learning applications, where the size of the data is usually of top priority.

5 Iterative updating strategy with gAMS and MF
In this section, we discuss some possible combinations of MF and gAMS algorithm, and explain how they can
help each other in order to improve accuracy. Some numerical illustrations are also provided.

5.1 Crude interaction between gAMS and MF
Let us start by using gAMS to estimate committor function in a crude way: we use the estimation provided
by gAMS as the training data of MF, with some pre�xed reaction coordinate such as the Euclidean distance
to the state A. The number of replicas is N = 100, and the minimum number of replicas to be killed at each
iteration is K∗ = 20. The reaction coordinate ξ1 is the Euclidean distance to the point (−1, 0) with the threshold
L∗ = 1.8. The starting point X0 is sampled uniformly over the rectangle Ω. In particular, when the sampled
point turns out to be in A (resp. B), we provide directly 0 (resp. 1) as the output of gAMS. At each point, we
simulate independently nsim = 50 runs of gAMS, and the �nal estimation is the average. The prediction given
by the MF model is presented in Figure 14. Then, we use the trained MF model as the new reaction coordinate
and the updated gAMS is therefore implemented to generate new training data for MF. The �nal performance
of the MF model is provided in Figure 15.

Figure 14: Learning with estimation by gAMS algorithm, with reaction coordinate ξ1. The inverse tem-
perature is β = 1.67.
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Figure 15: Learning with a trained MF model as reaction coordinate. The inverse temper-
ature is β = 1.67.

Clearly, the quality of approximation is improved. This procedure can be done repeatedly and we expect the
approximation of the committor function to be more and more accurate.

5.2 Tempering
In the previous section, we need to have a reasonable reaction coordinate in order to run gAMS in the �rst place.
This is not always tractable, especially in high dimensional situations. Here, we provide a possible strategy that
allows to “start out of nowhere”. The idea is simple: when the temperature is high, the rare events associated
to the energy barriers become less rare. We start with a small inverse temperature β0, such that crude Monte
Carlo provides reasonable estimations. Then, we estimate the associated committor function ξβ0 by crude Monte
Carlo. Next, we consider a tempering sequence (see Figure 16) β0 < β1, < · · · < βq∗−1 < βq∗ = β∗, where β∗
denotes the target inverse temperature. For each q ∈ [n], we estimate ξβq by using ξβq−1 as reaction coordinate,
until we get the target inverse temperature. Although this strategy is computationally intensive, it allows to
design gAMS algorithm in a much more adaptive and optimal way.
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Figure 16: Illustrations of committor functions for di�erent temperatures.

6 Discussions
In this chapter, we mainly discussed the possibility of using MF to estimate committor functions. This paves
the way to a wide range of possible interacting strategies of gAMS and MF. However, a more re�ned study still
needs to be conducted.

The �rst remark is on the sample points of the training data. In high-dimensional settings, the uniform
sampling strategy is typically intractable. In fact, one does not need to estimate the whole picture of the com-
mittor function if one only seeks to improve the performance of gAMS. A possible approach is to sample along
the reactive trajectories generated by gAMS. In this way, it is expected that the prediction of MF to be more
accurate along these transition paths, which yields a more accurate gAMS estimator. However, to develop a
proper sampling strategy for the sample points is not trivial. For example, for the overdamped Langevin dy-
namics, the reactive trajectories stay longer in the well of the energy landscape, which means that by uniformly
sampling the points along the reactive trajectories is not e�cient in general. Hence, the details still need to be
investigated.

The second remark is on hybrid approaches that combines gAMS and crude Monte Carlo. In fact, the im-
plementation of gAMS is mainly due to the behaviors of committor function close to the metastable states A
and B. We remark that when close to B the rare event is of form 1 − p∗, namely the values of the committor
function is very close to 1. This means that in a lot of places where the values of the committor function is
around 0.5, crude Monte Carlo is already able to provide reasonable estimations. Therefore, the design of an
adaptive hybrid approach may greatly increase the e�ciency of the algorithm.

The �nal remark is on Mondrian Forests. Since it is proved that �nite lifetime parameter λ yields non-
consistent estimator, it would be interesting to explore another alternative stopping criterion for the growth
of MT, in order to improve its robustness against largely perturbed data. One possible choice is standard in a
Random Forests context, that is to �x a threshold to control the minimum number of data in each subset of
the partition of the decision tree. Said di�erently, we �x a number Nmin in N such that when a subset in the
partition contains less data than Nmin, the split is rejected. The ideal case is that we can somehow design a
strategy such that this number Nmin can be evaluated by the variance of the output of the data. Since variance
estimation is available for both crude Monte Carlo and gAMS with MF as reaction coordinate, it would then be
possible to develop more automated and advanced algorithms.
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