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Abstract

Sequential Monte Carlo is a general framework aiming at sampling a sequence of mea-
sures (ηn ;n ≥ 0) connected by some nonlinear operators. In the classical setting, the
simulation consists in a multinomial resampling selection step and a Markov mutation
step at each iteration of the algorithm. When the potential functions are [0, 1]-valued, a
well-known variant is to conduct a Bernoulli survival test before the multinomial resam-
pling step: the surviving particles will not be resampled, whilst the non-survived particles
perform a multinomial resampling. We go one step further, that is, we suppose that the
surviving particles and non-surviving particles will mutate according to di�erent Markov
kernels. We refer this situation as “asymmetric resampling”. The idea is natural in rare-
event simulation and particle tempering problems, where the Markov kernel at step n is
ηn-invariant. In this scenario, the surviving particles do not perform a Markov transi-
tion while the non-surviving ones do. We provide a CLT-type result as well as consistent
variance estimators, which allows to conduct statistical inference with a single run of
the simulation. We also give some analysis on the behavior of non-asymptotic variance.
In particular, we provide an unbiased variance estimator for the unnormalized measures
under certain conditions. To do this, we introduce generalized coalescent tree-based mea-
sures and their particle approximations as a complement of the ones introduced respec-
tively in [CDMG11] and [DG19](Chapter 2). We �rmly believe that they represent an
important and natural family of mathematical objects in the general framework of SMC.
They are connected respectively to the asymptotic variance and non-asymptotic variance
by some nontrivial combinatorial properties that apply to all the one-parent interacting
particle systems. We expect the same methodology may also inspire further analysis for
the models in a continuous-time setting, such as Fleming-Viot particle systems (see, e.g.
[DCGR17]), and more general resampling schemes.
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1 Introduction
Sequential Monte Carlo (SMC) methods are powerful numeric algorithms widely used in
many �elds in computational statistics, such as Bayesian inference, �ltering, rare-events
simulations, etc. The reader is referred to [DdFG01] for a larger list of available applica-
tions. The basic idea is to simulate an Interacting Particle System (IPS) in order the ap-
proximate a sequence of probability measures (ηn)n≥0 or positive �nite measures (γn)n≥0
connected by some non-linear operators. The estimators are naturally designed as the as-
sociated empirical measures at each level of the IPS. The proper mathematical foundation
and more theoretical aspects such as convergence results and bias analysis can be found
for example in the pair of books [DM04, DM13] and references therein.

Classical SMC methods consist in a multinomial selection step and a Markov muta-
tion step at each step of the algorithm. This resampling strategy is well-understood both
in theory and in practice. It corresponds to a natural interpretation of the Boltzmann-
Gibbs transformation w.r.t. the potential functions (Gn ;n ≥ 0) on the empirical measures
(ηNn ;n ≥ 0). There are a lot of variants on this resampling strategy, such as residual re-
sampling, strati�ed resampling and systematic resampling, etc. The reader is referred to
[HSG06] for a quick survey. Some theoretical analysis can be found in the recent work
[GCW17], emphasizing on the most important variants of the resampling schemes men-
tioned above.

In contrast with the standard setting, we study the resampling strategy that uses two
di�erent Markov kernels, denoted respectively by M̊n and

•
Mn , at each iteration of the

algorithm. In the rest of this article, they are referred to as mutation kernels. Roughly
speaking, at each step, say, from level n − 1 to level n, each particle performs a Bernoulli
survival test w.r.t. the [0, 1]-valued potential function Gn−1: the survived particle mutates
according to

•
Mn while the non-surviving ones executes a multinomial resampling, also

w.r.t. the potential function Gn−1, after which a mutation according to the kernel M̊n will
be executed. The precise mathematical de�nition will be given in Section 2.4.

The main motivation is from the generalized Adaptive Multilevel Splitting (gAMS)
methods introduced in [BGG+16], where the kernel

•
Mn is designed to be the identity

δx (dy). This idea is natural in the applications such as Particle Tempering and Subset
Simulation, where M̊n is designed to be an ηn-invariant kernel. The original consideration
of this particular resampling scheme is to reduce the unnecessary computational costs
brought by the mutation kernel M̊n . Since the invention of Particle Markov Chain Monte
Carlo methods (PMCMC, cf. [ADH10]), the design of mutation kernels M̊n becomes much
easier and more computationally demanding at the same time. One typical example is
SMC2 methods (cf. [CJP13, CRGP15]). The basic idea is to use another SMC-based IPS and
freezing techniques to construct an ηn-invariant kernel at each level. One can imagine
that the computational costs are mainly from the implementation of the mutation kernels
(M̊n ;n ≥ 1), which can be dramatically reduced by the asymmetric resampling scheme
in this article if we choose

•
Mn to be the identity or some other “cheap” kernel. The same

situation can also be found in Adaptive Multilevel Splitting methods (AMS) in rare-event
simulation problems (see, e.g., [BGG+16] and [CDGR18]), when the mutation kernels are
proposed on the path space.

Another motivation is the symmetric sampling, namely, the case where all the parti-
cles mutate according to the same Markov kernel at each step. More precisely, it means
that

•
Mn ≡ M̊n for eachn ≥ 1 and this setting enters the classic Feynman-Kac particle mod-
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els intensely studied in [DM04]. It is well-known that the asymptotic variance is smaller
than the one under classical multinomial resampling scheme. The exact di�erence at each
step is presented in (20). As the symmetric resampling can also slightly reduce the com-
putational costs required by the multinomial resampling, there is no practical reason to
implement multinomial resampling scheme if an upper bound for Gn is available. In fact,
more advanced resampling schemes can still be considered to reduce the variance, since
there is still a multinomial resampling step for the non-survival particles in this setting.
Due to additional technical complications, they are left for future investigations.

In order to conduct statistical inference, it is important to study the asymptotic behav-
iors of the empirical measures associated to the IPS (see, e.g., [DM04, Cho04, DM08]). In
this respect, if one has a CLT-type theorem for some test function f such as

√
N

(
ηNn (f ) − ηn(f )

) d
−−−−−→
N→∞

N(0,σn(f )2),

it is su�cient to provide a consistent estimator σN
n (f ) of σn(f ) since Slutsky’s lemma

guarantees that
√
N

(
ηNn (f ) − ηn(f )

)
σN
n (f )

d
−−−−−→
N→∞

N(0, 1).

An asymptotic con�dential interval can therefore be derived as a by-product of the simu-
lation of IPS. Although SMC methods are intensely studied for over 20 years, the classical
way to achieve this is still by resimulating the IPS independently many times and by es-
timating σn(f )2 with the crude variance estimator. This is not always practical: a single
run of an IPS may take a lot of time, and one also expects that all the computational power
is used to improve precision, rather than to estimate the variance. In addition, as the es-
timator ηNn (f ) of ηn(f ) provided by SMC methods is typically biased, it is also nontrivial
to implement parallel computing for a large number of independent IPS with N relatively
small. As a consequence, a variance estimator available with a single run of the simulation
is of crucial interest for applications.

The breakthrough is due to Chan and Lai in [CL13]. By using the ancestral informa-
tion encoded in the genealogy of the associated IPS, the �rst consistent variance estimators
are proposed. Then, Lee and Whiteley [LW18] provided an unbiased variance estimator
for the unnormalized measures γ Nn and a term by term estimator, which helps to better
understand the role of the genealogy in variance related problems. Then, a more numeri-
cally stable variance estimator is provided in [OD19], as a natural �xed-lag version of the
original one proposed in [CL13], when more stability properties of the IPS are available.
Another recent result is given in [DG19](Chapter 2), by extending the estimator of Lee &
Whiteley to the adaptive SMC context (cf. [BJKT16]). All these estimators are studied in
the classical SMC framework, meaning under multinomial resampling scheme.

From a theoretical viewpoint, the current setting can be regarded as a “playground”
for more sophisticated algorithms in the adaptive context and/or in a continuous-time
setting: there is no additional attention required to deal with complicated regularity as-
sumptions, and we can thus focus on the structural properties of the IPS. Similar to the
case where the variance estimators provided by Lee & Whiteley in [LW18] are still valid
in the adaptive SMC framework with some additional assumptions (cf. Assumption 2,
[DG19](Chapter 2)), we expect that the variance estimators provided in this article are
still valid in more general settings, and our methodology can also be extended in such
scenarios. The rigorous mathematical formulation of the current setting can be seen as a
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generalization of the discrete-time Feynman-Kac particle models presented in the litera-
ture such as [DM04] and [DM13]. Our technical tools consist in a new family of mathe-
matical objects, i.e., the so-called coalescent Feynman-Kac measures and coalescent tree
occupation measures. They are introduced in order to apply the same methodology as
in the previous work [DG19](Chapter 2), which can potentially be a universal strategy
to conduct variance estimation in the one-parent IPS context. We hope these theoretical
tools may help the analysis of more complex and advanced models in the IPS context.

1.1 Main results
On one hand, in a very general setting, we provide consistent estimations for the tar-
get measures in SMC context with controllable asymptotic uncertainty under our speci�c
asymmetric resampling scheme. Since the computations of the variance estimators are
highly nontrivial, we provide detailed and e�cient algorithms with time and space com-
plexity analysis in Section A. If there is any ambiguity w.r.t. the notation, the reader is
referred to Section 1.2.

Theorem 1.1. Let (En ;n ≤ 0) be a sequence of Polish state spaces. Given a sequence of
[0, 1]-valued potential functions (Gn ;n ≥ 0) and a canonical Markov chain (Xn ;n ≥ 0)
taking values in (En ;n ≥ 0), with initial distribution η0 and transition kernels (M̊n ;n ≥ 1),
we de�ne the family of measures (γn ;n ≥ 0) by

γn(f ) := E

[
f (Xn)

n−1∏
p=0

Gp (Xp )

]
.

Assuming that γn(1) > 0 for any n ≥ 0, we also de�ne ηn(f ) := γn(f )/γn(1). For any test
function f ∈ Bb (En), when the number of particleN tends to in�nity, the estimators given by
Algorithm 2 in Section A, denoted respectively by γ Nn (f ) and η

N
n (f ), converge almost surely

to γn(f ) and ηn(f ) if for any n ≥ 1, we have

∀φn ∈ Bb (En), γn−1(Gn−1 × M̊n(φn)) = γn−1(Gn−1 ×
•
Mn(φn)).

Moreover, we also have
√
N

(
γ Nn (f ) − γn(f )

)
σ̂γ Nn (f )

d
−−−−−→
N→∞

N(0, 1),

as well as √
N

(
ηNn (f ) − ηn(f )

)
σ̂ηNn (f − η

N
n (f ))

d
−−−−−→
N→∞

N(0, 1),

where the computation of σ̂γ Nn (f ) and σ̂ηNn (f −η
N
n (f )) are respectively provided in Algorithm

5 and Algorithm 6 in Section A.

On the other hand, under mild assumptions, we provide an unbiased non-asymptotic
variance estimator of γ Nn (f ), which, again, represents the output of Algorithm 2.

Theorem 1.2. Assume the same setting as in Theorem 1.1. Under the condition discussed
in Section 4.1, which at least contains the case where

•
Mn ≡ M̊n for any n ≥ 1, the estimator

γ Nn (f ) is an unbiased estimator for γn(f ). Moreover, the estimator provided by Algorithm 7
in Section A is an unbiased estimator for the non-asymptotic variance of γ Nn (f ).
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1.2 Notation
Before getting into details, let us provide a few notations which are useful in the following.

• The underlying probability space is denoted by (Ω,F, P). For σ -�elds E,G ⊂ F, E∨G
denotes the smallest σ -�eld on Ω containing E and G. For any x,y ∈ R, we denote
x ∧ y := min{x,y} and x ∨ y := max{x,y}. We also adopt the standard convention
inf � = ∞.

• Let X be a number, a function or a random variable. We adopt the following con-
vention:

1
X1X,0 :=

{
1
X if X , 0,
0 otherwise.

(1)

Therefore, we admit the calculation

X × 1
X1X,0 = 1X,0.

• Random variables take values in Polish spaces, i.e., a topological space E which is
metrizable, separable and complete for some distance dE . It is endowed with the
Borel σ -algebra generated by dE , denoted by B(E).

• We denote respectively byM(E),M+(E) and P(E) the set of all signed �nite mea-
sures, the subset of all nonnegative �nite measures and the subset of all probability
measures on (E,B(E)). The set P(E) is endowed with the Prohorov-Lévy metric, i.e.,
the weak convergence “ d

−→” is tested with continuous bounded functions.
• Bb (E) denotes the collection of all the bounded measurable functions from (E,B(E))

to (R,B(R)) equipped with uniform norm ‖·‖∞, among which the constant function
will be denoted by 1 with a slight abuse of notation. Given a probability measure
η in P(E) and for all test functions in Bb (E), we denote η-ess sup(f ) the essential
supremum of f . It is de�ned by

η-ess sup(f ) := inf {a ∈ R : η(x ∈ E : f (x) > a) = 0} .

• For all µ ∈ M(E) and for all test functions f ∈ Bb (E), µ(f ) denotes the integration∫
E
f (x)µ(dx).

A �nite transition kernel Q from (E,B(E)) to (F ,B(F )) is a function

Q : E × B(F ) 7→ R+.

More precisely, for all x ∈ E, Q(x, ·) is a �nite nonnegative measure inM+(F ) and
for all A ∈ B(F ), x 7→ Q(x,A) is a B(E)-measurable function. We say that Q is a
Markov transition kernel if Q is a �nite transition kernel and for all x ∈ E, Q(x, ·) is
a probability measure in P(F ). For a signed measure µ ∈ M(E) and a test function
f ∈ Bb (F ), we denote respectively µQ ∈ M(E) and Q f ∈ Bb (E) are respectively
de�ned as follows:

∀A ∈ B(F ), µQ(A) :=
∫
E
µ(dx)Q(x,A),
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and
∀x ∈ E, Q f (x) :=

∫
F
Q(x,dy)f (y).

LetQ1 andQ2 be two �nite transition kernels respectively from E0 to E1 and from E1
to E2. When well-de�ned, we denote Q1 · Q2 or simply Q1Q2, the transition kernel
from E0 to E2 de�ned by

∀(x,A) ∈ E0 × B(E2), Q1Q2(x,A) :=
∫
E1

Q1(x,dy)Q2(y,A).

Note that, there is no reason that Q1Q2 is still a �nite transition kernel in general.
We say that Q1 is a uniformly �nite transition kernel from space E0 to E1 if

sup
x ∈E0

∫
Q1(x,dy) < +∞.

For example, a Markov transition kernel is a uniformly �nite transition kernel. Let
Q2 be a uniformly �nite transition kernel from E1 to E2, we have that Q1Q2 is also a
uniformly �nite transition kernel from E0 to E2.

• For two test functions f ,д ∈ Bb (E), we denote

f ⊗ д : E2 3 (x,y) 7→ f (x)д(y) ∈ R.

In particular, we denote
f ⊗2 := f ⊗ f .

Accordingly, we denote

Bb (E)
⊗2 := { f ⊗ д : f ,д ∈ Bb (E)} .

For two �nite transition kernelsQ and H from (E,B(E)) to (F ,B(F )), we denote, for
all (x,y) ∈ E × E and for all (A,B) ∈ B(F ) ⊗ B(F ),

Q ⊗ H ((x,y), (A,B)) := Q(x,A) × H (y,B).

Similarly, we also denote
Q ⊗2 := Q ⊗ Q .

• In order to de�ne the coalescent tree-based measures of size 2, we introduce the
transition operators C0 and C1 as

C0((x,y), (dx
′,dy ′)) := δ(x ,y)(dx ′,dy ′),

and
C1((x,y),d(x

′,y ′)) := δ(x ,x )(dx ′,dy ′).

In other words, for any measurable function H : E × E 7→ R, we have

C0(H )(x,y) = H (x,y) and C1(H )(x,y) = H (x, x).
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• For all x = (x1, . . . , xN ) ∈ EN , we de�ne the empirical measure associated to x by

m : x 7→m(x) := 1
N

N∑
i=1

δx i ∈ P(E).

We denote
m⊗2 : x 7→m⊗2(x) := 1

N 2

∑
i , j

δ(x i ,x j ) ∈ P(E),

and
m�2 : x 7→m�2(x) := 1

N (N − 1)
∑
i,j

δ(x i ,x j ) ∈ P(E).

A straightforward computation shows that

m⊗2(x) =
N − 1
N

m�2(x)C0 +
1
N
m�2(x)C1. (2)

With a slight abuse of notation, considering [N ] := {1, 2, . . . ,N }, we write

m([N ]) := 1
N

N∑
i=1

δi and m⊗2([N ]) :=m([N ]) ⊗m([N ]),

as well as
m�2([N ]) := 1

N (N − 1)
∑
i,j

δ(i , j).

2 SMC framework
In this section, we de�ne the SMC framework studied in this article. We present some
standard convergence results on the consistency and asymptotic normality of the asso-
ciated Interactive Particle System (IPS) in the discrete time setting. We mainly use the
language of Feynman-Kac particle models, and the reader is referred to the pair of books
[DM04] and [DM13] for more details. The main goal is to establish central limit theorems
and to specify the asymptotic variance in our speci�c asymmetric setting.

2.1 Setting
Let (En,B(En))n≥0 be a sequence of Polish spaces and let us �x a probability measure η0 ∈
P(E0). We consider a sequence of [0, 1]-valued measurable potential functions (Gn)n≥0
and a sequence of Markov transition kernels (M̊n)n≥1 s.t. M̊n : (En−1,B(En)) 7→ [0, 1]. We
de�ne the Feynman-Kac kernels as follows

∀(x,A) ∈ (En−1,B(En)), Q̊n(x,A) := Gn−1(x)M̊n(x,A).

It is readily checked that Qn is a uniformly �nite transition kernel. Therefore, we de�ne
the unnormalized Feynman-Kac measure γn by

∀n ≥ 1, γn := η0Q̊1Q̊2 · · · Q̊n,
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with γ0 := η0. By de�nition, for all n ≥ 1, γn is a sub-probability measure. For all n ≥ 0, we
suppose that we have a meaningful sampling problem at each step, i.e., we assume that
γn(1) > 0. Therefore, one can de�ne the normalized Feynman-Kac measures

∀n ≥ 1, ηn := γn
γn(1)

.

We adopt the convention
η−1 = γ−1 = η0.

By standard convention for the product symbol “
∏

”, it is readily checked that

∀n ≥ 0, γn =

{
n−1∏
p=0

ηp (Gp )

}
ηn . (3)

Di�erent from the classical framework of SMC methods, we suppose that there exists an
additional sequence of Markov transition kernels (

•
Mn)n≥0, such that for the Feynman-Kac

kernel de�ned by

∀(x,A) ∈ En−1 × B(En),
•
Qn(x,A) := Gn−1(x) ×

•
Mn(x,A),

we have, for all n ≥ 0,
γn

•
Qn+1 = γnQ̊n+1 = γn+1.

Using the Feynman-Kac kernels Q̊n and
•
Qn , we de�ne the Feynman-Kac kernel Qn by

Qn := ηn−1(Gn−1)
•
Qn + [1 − ηn−1(Gn−1)] Q̊n .

More rigorously, for any µ ∈ M(En−1) and for any f ∈ Bb (En), we have

µQn(f ) := ηn−1(Gn−1)µ
•
Qn(f ) + [1 − ηn−1(Gn−1)] µQ̊n(f ).

Hence, for all 0 ≤ p < n < +∞, the associated Feynman-Kac partial semigroup is de�ned
as follows:

Qp,n := Qp+1 · · ·Qn .

The term “partial” comes from the fact that the state spaces En may vary w.r.t. the time
horizon n. Hence, it is not a semigroup. In particular, the partial unit elements at each
step is de�ned by Qn,n(x,A) := δx (A) on the space En .

η0 = γ0 γ1 γn γn+1 · · ·

Q̊1

•
Q1

Q̊n+1

•
Qn+1

Q̊2 · · · Q̊n

•
Q2 · · ·

•
Qn

Q1 Q1,n Qn+1

Figure 1: Illustration of the Feynman-Kac measures �ow.
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Remark. Technically speaking, such
•
Mn always exists. For example, one may consider the

choice
•
Mn ≡ M̊n . Even in this simple symmetric setting, the variance related problems

are already very challenging. The CLT-type results are well-known (see, e.g., Chapter 7
of [DM04]). However, to the best of our knowledge, there is no consistent asymptotic
variance estimators available with a single simulation of the particle system. Meanwhile,
it is natural to implement the asymmetric resampling in the case where M̊n is an ηn-
invariant kernel: we are interested by the choice

•
Mn(x,dy) := δx (dy) since it requires the

least computational cost, which is widely-used by the practitioners in tempering and rare-
event simulation. Therefore, we combine these two examples and go one step further: we
consider the asymmetric resampling scheme and we provide some theoretical analysis.
When M̊n is not an ηn-invariant kernel, it is also always possible to construct a nontrivial
•
Mn using M̊n . In fact,

•
Mn can still be thought as some “cheaper” version of the latter:

M̊n can be designed as the composition of
•
Mn and an ηn-invariant kernel, for which one

may consider the PMCMC-type kernel, which is always available with (Gn ;n ≥ 0) and
(M̊n ;n ≥ 1) under the current setting. Intuitively speaking, this SMC2-type design can
help to reduce the dependence due to the multinomial resampling step.

De�nition 2.1. We introduce the asymmetric McKean kernel Kn,µ from En−1 to En , param-
eterized by some positive �nite measure µ ∈ M+(En−1) such that µ(Gn−1) > 0, de�ned as
follows

∀A ∈ B(En), Kn,µ (x,A) := Gn−1(x)
•
Mn(x,A) + (1 −Gn−1(x))

µ(Gn−1 × M̊n(A))

µ(Gn−1)
.

Accordingly, we also de�ne the McKean-type Feynman-Kac kernel Qn,µ by

Qn,µ := µ(Gn−1)Kn,µ (x,A),

with the convention
∀x ∈ E0, Q0,µ (x,A) := η0(A). (4)

Remark. Standard calculations show that the McKean-type kernels Kn,ηn−1 and Qn,ηn−1

also connect the Feynman-Kac measures �ow:

ηn−1Kn,ηn−1 = ηn and γn−1Qn,ηn−1 = γn . (5)

Assuming that Gn is upper bounded by 1 rather than a �nite positive number ‖Gn ‖∞ is
purely for technical reasons, in order to simplify the relatively heavy notation. There is
no loss of generality for the case where ‖Gn ‖∞ is known: we could always consider the
“normalized” version of potential function

Ḡn := Gn

‖Gn ‖∞
,

in order to construct a potential function varying on the interval [0,1]. However, when
‖Gn ‖∞ is not explicitly tractable, it is not possible to design the asymmetric version of
SMC sampler with �xed normalizer. When the normalizer is set to be+∞, we return to the
classical multinomial resampling scheme. This is a crucial problem in applications such as
tempering, when determining a reasonable upper bound of the potential function is not
always trivial. One possible solution is to consider the adaptive normalizer, depending
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upon the entry measure µ, rather than a pre�xed one. An interesting example of the
adaptive normalizer is de�ned by

µ-ess sup(Gn−1),

where µ denotes the entry measure of the McKean kernel. This is the “laziest” resampling
scheme we could ever design, which gives potentially the smallest asymptotic variance,
and no upper bound of the potential function is required. However, we failed to provide
the general analysis for this case since the calculation of the asymptotic variance in the
CLT-type results will become more challenging and it is possible that stronger mixing
properties for Q̊n and

•
Qn have to be assumed. Heuristically speaking, in order to estab-

lish the CLT-type results and to conduct the asymptotic variance estimation, one needs a
convergence of the following type:

∃ϵn ∈ R∗+, 1/ max
1≤i≤N

Gn(X
i
n)

P
−−−−−→
N→∞

ϵn .

This requires much stronger convergence than the well-known almost sure convergence
of the empirical measures. However, if the convergence above holds, we expect that the
methodology in this article would still be valid, with only minor notational complications.
In a nutshell, one needs to discuss the property above in concrete applications, such as the
mixing property of the Markov kernels, etc. Meanwhile, the goal of the present work is
to obtain some general structural results without further assumptions. As a consequence,
we decide to leave this important case for future research.

2.2 Interacting particle system
The Interacting Particle System (IPS) in this article refers to a Markov chain (Xn;n ≥ 0)
with absorption in the product spaces (ENn ,B(En)⊗N ;n ≥ 0). As we have seen in the
previous section (5), the normalized Feynman-Kac measures ηn and ηn+1 are connected by
Kn+1,ηn , which depends on the measure of the previous step ηn . Hence, it is not possible
to simulate directly according to the kernel Kn+1,ηn . The idea of the IPS is to simulate
N particles Xn = (X

1
n,X

2
n, . . . ,X

N
n ) step by step. Therefore, by exploiting the empirical

measurem(Xn) to approximate its “limiting” measure ηn , we are able to simulate the next
layer of particles Xn+1 with the approximated kernel Kn+1,m(Xn). In this section, we deal
with the version without the genealogy (i.e., the indices of the parent of each particle) and
the survival history of IPS. The mechanism of the IPS is de�ned as follows:

(i) X0 ∼ η
⊗N
0 ;

(ii) Stop the algorithm at step n ≥ 0 ifm(Xn)(Gn) = 0;
(iii) If not stopped at step n ≥ 0,

Xn+1 ∼

N⊗
i=1

Kn+1,m(Xn)(X
i
n, ·).

A more detailed explanation on the algorithm can be found in Section 2.4. The particle
approximation of the normalized measure ηn is de�ned by

ηNn :=m(Xn) =
1
N

N∑
i=1

δX i
n
.

11



According to (3), the unnormalized version γ Nn is de�ned by

γ Nn :=
{
n−1∏
p=0

ηNp (Gp )

}
ηNn .

The absorbing time τN of the Feynman-Kac IPS is de�ned by

τN := inf {n ∈ N : m(Xn)(Gn) = 0} .

2.3 Asymptotic results
In this section, we establish some basic convergence results such as law of large numbers
and central limit theorem for the empirical Feynman-Kac measures. These results are stan-
dard in the case where

•
Qn ≡ Q̊n (see, e.g., Chapter 7 of [DM04]) and the proofs are housed

respectively in Section C.3 and Section C.4. The goal is to understand the consequences
of the introduction of

•
Qn , especially on the form of the asymptotic variances.

Theorem 2.1. For any test function f ∈ Bb (En), we have

γ Nn (f )1τN ≥n
a .s .
−−−−−→
N→∞

γn(f ).

The almost sure convergence also holds for ηNn 1τN ≥n . In particular, by taking the test function
1 for ηNn , we get

1τN ≥n
a .s .
−−−−−→
N→∞

1.

Moreover, if we assume symmetric resampling, that is
•
Qn ≡ Q̊n for any n ≥ 1, we also have

∀n ≥ 0, E
[
γ Nn (f )1τN ≥n

]
= γn(f ).

Theorem 2.2. For any test function f ∈ Bb (En), we have

∀n ≥ 0,
√
N

(
γ Nn (f )1τN ≥n − γn(f )

) d
−−−−−→
N→∞

N

(
0,σ 2

γn (f )
)
,

with the asymptotic variance de�ned as follows:

σ 2
γn (f ) :=

n∑
p=0

(
γ ⊗2
p C1Q

⊗2
p,n(f

⊗2) − γ ⊗2
p−1C1Q

⊗2
p,ηp−1Q

⊗2
p,n(f

⊗2)
)
. (6)

Similarly, we also have

∀n ≥ 0,
√
N

(
ηNn (f )1τN ≥n − ηn(f )

) d
−−−−−→
N→∞

N

(
0,σ 2

ηn (f − ηn(f ))
)
,

with σ 2
ηn de�ned by

∀φ ∈ Bb (En), σ 2
ηn (φ) := σ 2

γn (φ)/γn(1)
2. (7)

Let us emphasize that one of the main goals of this article is to provide consistent
estimators w.r.t. the particle numbers N for the asymptotic variances σ 2

γn and σ 2
ηn de�ned

above. In practice, thanks to Slutsky’s lemma, the consistent variance estimators allow us
to deduce con�dential intervals with one single simulation of IPS.
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2.4 Genealogy and survival history
In this section, we give a more detailed version of the IPS de�ned in Section 2.2, namely,
the actual simulation algorithm we execute in practice. Speci�cally, we trace two kinds of
information: the genealogy An = (A

1
n, . . . ,A

N
n ) ∈ [N ]

N and the so-called survival history
Bn = (B

1
n, . . . ,B

N
n ) ∈ {0, 1}N . They are both intermediate random variables introduced in

the real-world algorithm, so that one can simulate according to an approximated kernel
Kn+1,m(Xn). Note that

Ai
n = j

means that the parent of X i
n+1 at level n is X j

n . Besides, Bin = 1 indicates that the particle
X i
n has survived at step n, i.e., the parent of X i

n+1 is X i
n (Ai

n = i) and

X i
n+1 ∼

•
Mn(X

i
n, ·).

Note that this does not mean that a non-survived particle at step n, i.e., a particle such
that Bin = 0, is disappeared in the IPS after step n: it can still be selected as a parent by the
multinomial resampling step. Unlike the multinomial selection scheme, the information
encoded in IPS and its genealogy is not enough to conduct the variance estimation. This
is the reason why survival history has to be taken into consideration. Another remark is
for rare-event simulation, or more generally, the case where (Gn ;n ≥ 0) are all indicator
functions: the survival history is already encoded in (G(X i

n),n ≥ 0, i ∈ [N ]). Hence, there
is no need to track them separately. Now, let us give the proper de�nition of the IPS with
its genealogy and survival history:

(i) Initial distribution:
At step 0, we let X0 ∼ η

⊗N
0 .

(ii) Stopping criterion:
Stop the algorithm at step n ≥ 0 ifm(Xn)(Gn) = 0.

(iii) Transition kernels:
If not stopped at n ≥ 0, we execute the elementary transition X i

n  X i
n+1 for all

1 ≤ i ≤ N conditionally independently, following the three steps:
• Survival test: Let Bin be a Bernoulli random variable with probability Gn(X

i
n),

that is
Bin ∼ Gn(X

i
n)δ1 + (1 −Gn(X

i
n))δ0.

• Selection: If Bin = 1, we let Ai
n = i . Otherwise, the parent index is selected by

the following multinomial selection

Ai
n ∼

N∑
k=1

Gn(X
k
n )∑N

j=1Gn(X
j
n)
δk .

Therefore, given Bin = βin , we have

Ai
n ∼ βinδi + (1 − βin)

N∑
k=1

Gn(X
k
n )∑N

j=1Gn(X
j
n)
δk .

• Mutation: Given Bin = βin and Ai
n = ain , each particle X i

n evolves independently
from level n to level n + 1 according to the following transition kernel:

X i
n+1 ∼ βin

•
Mn+1(X

i
n, ·) + (1 − βin)M̊n+1(X

ain
n , ·).
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3 Variance estimations
In this section, we provide estimators for the asymptotic variances σ 2

γn (f ) and σ 2
ηn (f ): we

provide a term by term asymptotic variance estimator, an unbiased variance estimator
under symmetric resampling scheme, and �nally, an e�cient asymptotic variance estima-
tor. The strategy is almost identical as in [DG19](Chapter 2). First, we give an alternative
representation of the asymptotic variance σ 2

γn (f ) using some generalized coalescent tree-
based measures. Next, we provide convergence results of the particle approximations of
these generalized coalescent tree-based measures, which gives naturally a term by term
variance estimator. Finally, we connect this term by term estimator to the non-asymptotic
variance using a nontrivial combinatorial property of the IPS given in Theorem B.1, from
which we derive an e�cient variance estimator that can be computed with the optimal
O(nN ) time complexity.

3.1 Asymptotic variance expansion
In this section, we revisit the asymptotic variance σ 2

γn (f ) of Theorem 2.2 using some novel
coalescent tree-based measures. More precisely, unlike the multinomial case, the form of
the asymptotic variance σ 2

γn (f ) is relatively complex under asymmetric resampling and
there is no free coalescent tree-based expansion as in [DG19](Chapter 2). Hence, we need
to introduce some generalized coalescent tree-based measures as a supplement of the one
introduced in [CDMG11]. The goal is plain and simple: we want to establish an alternative
representation of the asymptotic variance based on some coalescent tree-based measures.
To begin, let us de�ne the so-called coalescent Feynman-Kac kernels:

(i)
{
Q†,0n := Q ⊗2

n ;
Q†,1n := C1Q

⊗2
n − ηn−1(Gn−1)

2C1
•
Q ⊗2
n .

(ii)


Q̃†,0n := Q ⊗2

n ;
Q̃†,1n := ηn−1(Gn−1)

[
(Gn−1 ×

•
Qn) ⊗ Q̊n + Q̊n ⊗ (Gn−1 ×

•
Qn)

]
+ηn−1(G

2
n−1)

[ •
Q ⊗2
n −

•
Qn ⊗ Q̊n − Q̊n ⊗

•
Qn

]
.

The full description of this new family of kernels can be found in Section B.2. Using
the partial semigroup property of the coalescent Feynman-Kac kernels de�ned above,
we introduce some generalized coalescent tree-based measures. They will be referred
to as coalescent Feynman-Kac measures in this article. In the next de�nition, we call
b := (b0, . . . ,bn) ∈ {0, 1}n+1 a coalescence indicator where bp = 1 indicates that there
is a coalescence at level p.

De�nition 3.1. For any n ≥ 1 and for any coalescence indicator b ∈ {0, 1}n+1, we de�ne
the signed �nite measures Γ†,bn and Γ̃†,bn by

∀F ∈ Bb (E
2
n), Γ†,bn (F ) := η⊗2

0 Q†,b0
1 Q†,b1

2 · · ·Q†,bn−1
n Cbn (F ),

and
∀F ∈ Bb (E

2
n), Γ̃†,bn (F ) := η⊗2

0 Q̃†,b0
1 Q̃†,b1

2 · · · Q̃†,bn−1
n Cbn (F ),

with the convention
Γ†,b0 (F ) = Γ̃†,b0 (F ) := η⊗2

0 Cb0 .
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When there is only one coalescence at level p, we write respectively Γ
†,(p)
n (F ) and Γ̃

†,(p)
n (F )

instead. When there is no coalescence, we denote respectively Γ†,(�)n (F ) and Γ̃†,(�)n (F ).

The connection of the original coalescent tree-based measures proposed in [CDMG11]
and the generalized version de�ned above will be discussed in Section B.1 and Section B.2.
By exploiting this novel pair of coalescent Feynman-Kac measures, we have the following
alternative representation of the asymptotic variance σ 2

γn (f ). The rigorous veri�cation is
housed in Section C.2.

σ 2
γn (f ) :=

n∑
p=0

(
Γ
†,(p)
n (f ⊗2) − Γ†,(�)n (f ⊗2)

)
+

n−1∑
p=0

Γ̃
†,(p)
n (f ⊗2). (8)

3.2 Term by term asymptotic variance estimators
Thanks to the alternative representation (8) given in the last section, the variance esti-
mation problem is reformulated as how we can estimate the corresponding coalescent
Feynman-Kac measures. Using the same idea as in [DG19](Chapter 2), we construct the
particle approximation of Γ†,bn and Γ̃†,bn . They will be referred to as coalescent tree occupa-
tion measures in this article.

In the following, ã[2]p = (ã1
p, ã

2
p ) and `[2]p = (`

1
p, `

2
p ) denote two couples of indices be-

tween 1 and N , while an (n + 1)-sequence of couples of indices such that `1
p , `2

p for all
0 ≤ p ≤ n is written

`[2]0:n = (`
[2]
0 , · · · , `

[2]
n ) ∈

(
(N )2

)×(n+1)
,

where (N )2 := {(i, j) ∈ [N ]2 : i , j}. Especially, we denote

`[2]p :p+1 := (`[2]p , `
[2]
p+1).

Additionally, we use the notation X
`
[2]
n
n = (X

`1
n
n ,X

`2
n
n ) to shorten the writings. One can also

�nd a toy example in [DG19](Chapter 2) in order to get more intuitions for the following
de�nition.

De�nition 3.2. For any n ≥ 0 and for any coalescence indicator b ∈ {0, 1}n+1, the estimator
Γ‡,bn,N of Γ†,bn is de�ned by

∀F ∈ Bb (E
2
n), Γ

‡,b
n,N (F ) =

1
N (N − 1)

∑
`
[2]
n ∈(N )2


n−1∏
p=0

∑
`
[2]
p ∈(N )2

G‡p(Xp)λ
b
p (A

`
[2]
p+1
p , `[2]p )

Cbn (F )(X
`
[2]
n
n ),

with G‡p de�ned by

∀xp ∈ E
N
p , G‡p(xp ) := N

N − 1m
⊗2(xp )(G

⊗2
p ),

and λbp (ã
[2]
p , `

[2]
p ) ∈ {0, 1} is the indicator function de�ned by

λbp (ã
[2]
p , `

[2]
p ) := 1{bp=0}1{ã1

p=`
1
p,ã

2
p=`

2
p }
+ 1{bp=1}1{ã1

p=`
1
p=ã

2
p,`

2
p }
.

Notice that, by standard convention, we get

Γ‡,b0,N := 1
N (N − 1)

∑
`
[2]
0 ∈(N )

2

Cb0(F )(X
`
[2]
0

0 ) =
1

N (N − 1)
∑
i,j

Cb0(F )(X
i
0,X

j
0). (9)
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Remark. In fact, Γ‡,bn,N de�ned above is exactly the same estimator as Γbn,N de�ned in De�-
nition 3.2 of [DG19](Chapter 2). The change of notation is due to the change of resampling
scheme, and the exact reason lies in a technical result (cf. Proposition C.9). The inhomo-
geneity of the notation w.r.t. “‡” and “†” is due to some nontrivial combinatorial structure
of the asymmetric SMC framework. The detailed explanation can be found in Proposition
B.3 and other remarks in Section B.2.

De�nition 3.3. For any test function F ∈ Bb (E
2
n) and any coalescence indicator b, the

estimator Γ̃†,bn,N of Γ̃†,bn is de�ned by

Γ̃†,bn,N (F ) := 1
N (N − 1)

∑
`
[2]
n ∈(N )2


n−1∏
p=0

∑
`
[2]
p ∈(N )2

G̃†,bpp (`[2]p :p+1,Bp,Xp)λ
(�)
p (A

`
[2]
p+1
p , `[2]p )

 F (X
`
[2]
n
n )

with G̃†,bpp de�ned as follows:

∀(`[2]p :p+1, βp ,xp ) ∈
(
(N )2

)×2
× {0, 1}N × ENp ,

we let
G̃†,0p (`

[2]
p :p+1, βp ,xp ) := G‡p(Xp) −

1
N − 1 G̃

†,1
p (`

[2]
p :p+1, βp ,xp ),

and

G̃†,1p (`
[2]
p :p+1, βp ,xp ) :=β

`1
p+1
p β

`2
p+1
p m(xp )(G

2
p )

+ β
`1
p+1
p (1 − β

`2
p+1
p )m(xp )(Gp )

Gp (x
`1
p
p )m(xp )(Gp ) −m(xp )(G

2
p )∑

k,`1
p

(
1 −Gp (X

k
p )

)
/N

+ β
`2
p+1
p (1 − β

`1
p+1
p )m(xp )(Gp )

Gp (x
`2
p
p )m(xp )(Gp ) −m(xp )(G

2
p )∑

k,`2
p

(
1 −Gp (X

k
p )

)
/N

.

We also de�ne
∀F ∈ Bb (E

2
n), Γ(�)n,N (F ) := Γ̃†,(�)n,N (F ).

Remark. In particular, if Gn is an indicator function for all n ≥ 0, we consider

G̃†,1p (`
[2]
p :p+1, βp ,xp ) := β

`1
p+1
p β

`2
p+1
p m(Xp)(G

2
n),

which leads to a simpler form of G̃†,0p , i.e.,

G̃†,0p (`
[2]
p :p+1, βp ,xp ) := β

`1
p+1
p β

`2
p+1
p m(xp )

�2(Gp )+
N

N − 1 (1− β
`1
p+1
p β

`2
p+1
p )m⊗2(xp )(G

⊗2
p ). (10)

Returning to the coalescent tree-based expansion given in (8), it is natural to de�ne
the term by term estimators σ 2

γ Nn
(f ) as follows:

σ 2
γ Nn
(f ) :=

(
n∑
p=0

(
Γ
‡,(p)
n,N (f

⊗2) − Γ‡,(�)n,N (f
⊗2)

)
+

n−1∑
p=0

Γ̃
†,(p)
n,N (f

⊗2)

)
1τN ≥n .
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Then, by (7), it is natural to consider

σ 2
ηNn
(f ) := σ 2

γ Nn
(f ) /γ Nn (1)2.

Therefore, thanks to Theorem B.3 and Corollary B.3.1 , we have the consistency of these
term by term variance estimators.

Theorem 3.1 (Consistency of σ 2
γ Nn

and σ 2
ηNn

). For any test function f ∈ Bb (En), we have

sup
N ≥0

√
NE

[���σ 2
γ Nn
(f ) − σ 2

γn (f )
���] < +∞,

as well as

σ 2
ηNn

(
f − ηNn (f )

)
− σ 2

ηn (f − ηn(f )) = Op

(
1
√
N

)
.

Remark. We do not provide the algorithm to compute these estimators, since, to the best of
our knowledge, they can only be computed with time complexity O(nN 2). Therefore, they
mainly serve as theoretical handy tools prove the consistency of the e�cient estimator
given in Algorithm 5 and Algorithm 6. However, with the same techniques as in these
two Algorithms, one should be able to design an algorithm such that each term in the
asymptotic variance can be evaluated separately, with time complexity O(nN ). The details
are given in Section B.6.

3.3 Unbiased non-asymptotic variance estimator
In this section, we provide an unbiased non-asymptotic variance estimator which is only
valid under symmetric resampling scheme, i.e.,

•
Qn ≡ Q̊n for all n ≥ 0. However, we

prove that in the general case, this estimator also yields a consistent asymptotic variance
estimator. In fact, in order to provide an unbiased non-asymptotic variance estimator, the
idea is much more straightforward: thanks to Theorem 2.1, we know that under symmetric
sampling scheme, the estimation γ Nn (f )1τN ≥n is unbiased. As a consequence, one has

Var
[
γ Nn (f )1τN ≥n

]
= E

[
γ Nn (f )

21τN ≥n
]
− E

[
γ Nn (f )1τN ≥n

]2︸                ︷︷                ︸
=γn (f )2=γ ⊗2

n (f ⊗2).

.

It is then clear that constructing an unbiased non-asymptotic variance estimator is equiv-
alent to constructing an unbiased estimator for the measure γ ⊗2

n . Therefore, the following
proposition is a direct consequence of Proposition C.3. The detailed computation is pro-
vided in Algorithm 7 in Section A.

Theorem 3.2. Assume symmetric resampling, that is,
•
Qn ≡ Q̊n for all n ≥ 0. For any test

function f ∈ Bb (En), the estimator V N
n (f ) de�ned below is an unbiased variance estimator

of γ Nn (f )1τN ≥n :
V N
n (f ) :=

(
γ Nn (f )

2 − Γ(�)n,N (f
⊗2)

)
1τN ≥n . (11)

Remark. In fact, this unbiased estimator can also be used by AMS methods if the image
of the reaction coordinate is a �nite set, and under some regularity assumption on the re-
sampling kernel (e.g. Assumption 1, 2 of [BGG+16]) is satis�ed. Although the associated
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IPS is not simulated by symmetric resampling, recent results (cf. [CDGR18]) show that
one can construct an IPS with particles de�ned by some level-indexed processes that are
“mathematically symmetrically resampled”. It can be regarded as an almost sure equiva-
lence between an arti�cial asymmetric IPS, i.e. the real-world algorithm, and a symmetric
IPS constructed by some abstract mathematical objects. More generally, when the reac-
tion coordinate is �nite-valued, the AMS method enters the asymmetric SMC framework.
More discussions on this topic can be found in Section 4.1. As a consequence, for all the
unbiasedness results in this article, we only use the condition under symmetric resampling
or assume symmetric resampling in order to simplify the writings.

3.4 Connection between the estimators
The connection between the term by term estimators and the non-asymptotic variance
estimator is based on Theorem B.1. Unfortunately, to the best of our knowledge, both
of these estimators can only be computed with O(nN 2) time complexity. However, this
connection inspired the construction of the e�cient consistent estimator provided in the
next section. The proof is provided in Section C.5.

Proposition 3.1. For any test function f ∈ Bb (En), we have

sup
N >1

NE
[���NV N

n (f ) − σ
2
ηNn
(f )

���] < +∞, (12)

and

NV N
n (f − η

N
n (f )) − σ

2
ηNn
(f − ηNn (f )) = Op

(
1
N

)
. (13)

3.5 E�cient asymptotic variance estimators
The e�cient variance estimator can be regarded as a “mix” of the term by term estimator
and the non-asymptotic estimator provided respectively in Section 3.2 and Section 3.3.
Inspired by a by-product (41) in the proof of Proposition 3.1, an intermediate estimator
can be proposed as follows(

N
(
γ Nn (f )

2 − Γ‡,(�)n,N (f
⊗2)

)
+

n−1∑
p=0

Γ̃
†,(p)
n,N (f

⊗2)

)
1τN ≥n .

By the same technique as the one proposed in [LW18], the former term

N
(
γ Nn (f )

2 − Γ‡,(�)n,N (f
⊗2)

)
can be computed with O(nN ) time complexity, which corresponds to the term V‡ in Algo-
rithm 5. Hence, the design of an e�cient variance estimator amounts to constructing an
e�cient estimator for Γ̃†,(p)n . Since we failed to provide an e�cient algorithm to compute
Γ̃
†,(p)
n,N , we consider some particle approximation Γ̃

‡,(p)
n,N of Γ̃†,(p)n , such that Γ̃‡,(p)n,N is “close”

enough to the original one Γ̃
†,(p)
n,N , and which, at the same time, can be computed with

O(nN ) time complexity.
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De�nition 3.4. For any test function F ∈ Bb (E
2
n) and any coalescence indicator b, the

e�cient estimator Γ̃‡,bn,N of Γ̃†,bn is de�ned by

Γ̃‡,bn,N (F ) := 1
N (N − 1)

∑
`
[2]
n ∈(N )2


n−1∏
p=0

∑
`
[2]
p ∈(N )2

G̃‡,bpp (`[2]p :p+1,Bp,Xp)λ
(�)
p (A

`
[2]
p+1
p , `[2]p )

 F (X
`
[2]
n
n )

with G̃‡,bpp de�ned by, ∀(`[2]p :p+1, βp ,xp ) ∈
(
(N )2

)×2
× {0, 1}N × ENp ,{

G̃‡,0p (`
[2]
p :p+1, βp ,xp ) := G‡p(xp );

G̃‡,1p (`
[2]
p :p+1, βp ,xp ) := G̃†,1p (`

[2]
p :p+1, βp ,xp ).

Proposition 3.2. For any test function F ∈ Bb (E
2
n) and any coalescence indicator b ∈

{0, 1}n+1, we have
sup
N >1

NE
[���̃Γ‡,bn,N (F ) − Γ̃

†,b
n,N (F )

���] < +∞.
Finally, we provide the e�cient asymptotic variance estimators, which are respectively

the output of Algorithm 5 and Algorithm 6. For any test function f ∈ Bb (En), we de�ne

σ̂ 2
γ Nn
(f ) := N

(
γ Nn (f )

2 − Γ‡,(�)n,N

)
+

n−1∑
p=0

Γ̃
‡,(p)
n,N (f

⊗2), (14)

and
σ̂ 2
ηNn
(f ) = σ̂ 2

γ Nn
(f )/γ Nn (1)2.

Thanks to Proposition B.4, Proposition 3.2, Proposition B.4, Theorem 3.1 and Theorem 2.1,
we have the following consistency result.

Theorem 3.3 (Consistency of σ̂ 2
γ Nn

and σ̂ 2
ηNn

). For any test function f ∈ Bb (En), we have

sup
N >1

√
NE

[���σ̂ 2
γ Nn
(f ) − σ 2

γn (f )
���] < +∞,

as well as

σ̂ 2
ηNn

(
f − ηNn (f )

)
− σ 2

ηn (f − ηn(f )) = Op

(
1
√
N

)
.

4 Discussions

4.1 Unbiasedness condition
We discuss the condition such that the estimations for the unnormalized measures are
unbiased. More precisely,

E
[
γ Nn (f )1τN ≥n

]
= γn(f ) and E

[
Γ(�)n,N (f )1τN ≥n

]
= γn(f )

2.

The major motivation is to give an intuitive interpretation of Assumption 2 of [BGG+16] in
our �xed level setting. Recent works (cf. [DCGR17] and [CDGR18]) show that Assumption

19



2 of [BGG+16] can eventually be regarded as a requirement to reformulate AMS methods
as Fleming-Viot particle systems, which enters the continuous-time generalization of the
current framework, with symmetric resampling, namely, the case where

•
Qn ≡ Q̊n . More

concretely, if the real-world simulation is under asymmetric resampling scheme, but we
are somehow able to �nd out an underlying mathematical structure that is symmetrically
resampled, the unbiasedness will be recovered. In addition, as discussed in Section B.1, it
also gives a smaller asymptotic variance than the multinomial resampling. Unfortunately,
the only setting we could provide that allows this property is the family of AMS methods in
the dynamical setting. The readers are referred to [DCGR17], [CDGR18] and [BGG+16] for
more details. In this respect, since the real mathematical object is simply a symmetric SMC
model, we did not emphasize the more complex condition discussed above, which is also
due to the fact that the variance estimators are the same in the symmetric and asymmetric
resampling schemes. Moreover, it would be interesting to see if we can implement the
same technique in Particle Tempering methods, at least in some speci�c situations.

4.2 Other comments
On the adaptive SMC models First, we want to mention that the current setting
covers the Adaptive Multilevel Splitting methods when the image of the reaction coordi-
nate is a �nite set. This is due to the fact that under asymmetric resampling scheme, when
the potential of a particle is 1, there is no additional computational cost required to evolve
the IPS. In practice, it corresponds to the case where the reaction coordinate function is
calculated by some pre�xed grid. Next, since the ingredients we need to implement asym-
metric SMC are nearly the same as for the classical multinomial SMC, we can therefore
consider the corresponding adaptive methods as in our previous work in [DG19](Chapter
2). Since all the technical results are done in a similar style, we expect the adaptive version
with Assumption 2 of [DG19](Chapter 2) to be a simple generalization from a mathemat-
ical point of view, at the price of some notational complications. Therefore, the variance
estimators may be used as a reference if the underlying resampling scheme is changed
to the asymmetric one. We also expect the asymptotic variance estimators to apply to
another family of adaptive SMC models, which contain an online adaptive resampling
strategy, such as [GDM17] and [DMDJ12]. Roughly speaking, the resampling is executed
when some summary statistics, such as the popular E�ective Sample Size, attains some
pre�xed threshold. In this scenario, as the adaptive model and the �xed reference model
are connected by a coupling argument, one is also encouraged to use our estimators in
the real-world applications as a reference. However, there are situations where we are
sure that the estimators provided in this article will fail. The �rst example is in Section 2
of [BJKT16]. If the stability property given in Theorem 2.3 is not veri�ed: namely, if the
“limit” model has di�erent asymptotic variance, then, it is not possible to conduct variance
estimations with our estimators. The same argument also applies to the Adaptive Temper-
ing introduced in section 3 of [BJKT16]: it is not possible to use our variance estimator as
a reference even if we change the underlying resampling scheme. In all cases, the rigorous
analysis of the adaptive context requires more attention on the regularity of the adaptive
parametrizations.

On thenon-asymptotic variance expansion and long-termbehaviors There
is an angle that we could but we did not touch in the present work: using the �ner analysis
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given in Lemma C.10 and the decomposition in Theorem B.1, we can give a very sharp up-
per bound of the non-asymptotic variance, w.r.t. both n and N . Since it is well understood
that the non-asymptotic variance may also contribute to the bound encountered in the
propagation of chaos property of the particle system (cf. [DMPR09]), we expect that one
can also derive the sharp propagation of chaos bound for the non-asymptotic empirical
measures. In particular, this kind of analysis can provide information on the bias asso-
ciated to the estimation ηNn (f )1τN ≥n . The same idea can also be applied to obtain sharp
Lp-bound estimates. This is a relatively large topic, the rigorous analysis is thus left for
future investigations. Returning to the variance estimation problems, we remark that all
the consistent variance estimators provided in this article are essentially for “short-term”
models, namely, n is set to be �nite and N tends to in�nity. When more stability proper-
ties of the Feynman-Kac kernels are available, it would be interesting to investigate the
�xed-lag variance estimator such as the one introduced in [OD19]. The same kind of es-
timators, i.e., by considering only part of the genealogy, as well as the survival history, is
expected to be more numerically stable in the long term. We expect that the regularity
requirements will be the same as in the multinomial case.

On the PMCMC-type kernels Another remark is on the PMCMC-type kernels:
starting from a trajectory of the particle system, the new sample is constructed by simu-
lating an IPS with this frozen trajectory, and we pick randomly and uniformly an ancestral
lineage in the novel IPS, using its terminal point as the new sample. This kind of kernel
does not enter the framework of gAMS since Assumption 2 of [BGG+16] is not veri�ed.
Therefore, no level-indexed process can be derived. However, it is a widely used kernel in
the Particle Filters and Particle Tempering contexts. In rare-event simulation context, it is
also promising in resolving the high dimensional multimodal metastable problems. As a
complement, the present work can implement this type of kernels: in fact, one may pre�x
a very �ne grid of levels: since the resampling scheme we use does not require additional
computation when all the particles have survived, the implementation is very close to the
last-particle AMS methods in practice. Moreover, one can also construct the PMCMC-type
kernel by using the standard transition kernel that satis�es Assumption 2 of [BGG+16].
It is possible to study the performance of this Markov kernel with the theoretical tools
we provided in this article. This kind of connection is also well illustrated in [ALV18].
Nevertheless, the rigorous analysis is also left for future research.
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Appendices
A Algorithms to compute variance estimators
We provide all the supporting algorithms in this section. The matrix-type data structures
will be denoted by bold abbreviations, such as IPS, GENE and SH. They stand respectively
for Interacting Particle System, genealogy and survival history. For any set E, we denote
Mn×N (E) the collection of all the n × N matrices with elements taking values in E. For
example, the notation SH[p, i] stands for the element at p-th row and i-th column of the
matrix SH. In particular, since the state space may vary w.r.t. time horizon, IPS is not
necessarily a matrix, however, we still use the notation IPS[p, i] to denote the i-th particle
at level p of IPS.

Algorithm 1: Simulation of an IPS with genealogy and survival history.
Require: particle number N , time horizon n, potentials (Gp ; 0 ≤ p ≤ n − 1), Markov kernels (M̊p ; 1 ≤ p ≤ n)

and (
•
Mp ; 1 ≤ p ≤ n), initial distribution η0.

Result: absorbing time T ∈ {0, 1, . . . ,n}, particle system IPS of size (n + 1) × N , genealogy GENE
∈ Mn×N ([N ]), survival history SH ∈ Mn×N ({0, 1}), ancestor indices EVE ∈ M(n+1)×N ([N ]).

1 Initialization:
2 Allocate memory for IPS, GENE, SH and EVE;
3 T = 0;
4 SumG = 0;
5 for i ∈ {1, 2, . . . ,N } do
6 IPS[0, i] ∼ η0;
7 SumG = SumG+G0(IPS[0, i]);
8 EVE[0, i] = i;
9 end

10 Iteration:
11 while SumG > 0 and T < n do
12 SumG = 0;
13 for i ∈ {1, 2, . . . ,N } do
14 U ∼ Uniform[0, 1];
15 if U ≤ GT(IPS[T, i]) then
16 ParentIndex = i;
17 IPS[T + 1, i] ∼

•
MT+1(IPS[T, ParentIndex], ·);

18 SH[T, i] = 1;
19 else
20 ParentIndex ∼ Categorical

(
GT(X

1
T),GT(X

2
T), . . . ,GT(X

N
T )

)
;

21 IPS[T + 1, i] ∼ M̊T+1(IPS[T, ParentIndex], ·);
22 SH[T, i] = 0;
23 end
24 EVE[T + 1, i] = EVE[T, ParentIndex];
25 GENE[T, i] = ParentIndex;
26 SumG = SumG+GT+1(IPS[T + 1, i]);
27 end
28 T = T + 1;
29 end
30 T = max{0,T − 1}1T<n + n1T=n .
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Algorithm 2: Computation of γNn (f ) and ηNn (f ).
Require: absorbing time T, the associated interacting particle system IPS, test function f .
Result: estimators γ Nn (f ) and ηNn (f ).

1 if T < n then
2 ηNn (f ) = 0;
3 γ Nn (f ) = 0;
4 else
5 Normalizer = 1;
6 for p ∈ {0, 1, . . . ,n − 1} do
7 Normalizer = Normalizer × 1

N
∑N

i=1Gp (IPS[p, i]);
8 end
9 ηNn (f ) =

1
N

∑N
i=i f (IPS[n, i]);

10 γ Nn (f ) = Normalizer × ηNn (f );
11 end
12 return γ Nn (f ) and η

N
n (f ).

Now, let us provide the e�cient algorithms for the consistent asymptotic variance estima-
tors (cf. Algorithm 5, 6). We need some auxiliary steps: generation of backward genealogy
tracing matrix Θ and de�nition of a special “star inner product” on R3. They are provided
respectively in Algorithm 3 and Algorithm 4. With a slight abuse of notation, we use
the notation Mn×1(E) to denote the collection of all the array of length n on the set E.
For A ∈ Mn×1(E), we use A[p] to denote the p-th element of A. To simplify the notation,
A = zeros(n,N )means that we allocate memory for A ∈ Mn×N (R) and let all the elements
of A be 0. In addition, the k-th row of A will be denoted by A[k, :].

Algorithm 3: Generate backward genealogy tracing matrix: Θ.
Require: absorbing time T, genealogy of an IPS GENE ∈ Mn×N ([N ]).
Result: backward genealogy tracing matrix Θ, where Θ[p, i] stands for the parent index at level p of i-th

particle at level T.
1 Initialization:
2 Allocate memory for Θ ∈ MT×N ([N ]);
3 Iteration:
4 for i ∈ {1, 2, . . . ,N } do
5 CurrentIndex = i;
6 for p ∈ {1, 2, . . . ,T} do
7 ParentIndex = GENE[T − p,CurrentIndex];
8 Θ[T − p, i] = ParentIndex;
9 CurrentIndex = ParentIndex;

10 end
11 end

Algorithm 4: Compute star inner product in R3: starProduct(X, Y).
Require: vector X = (X [1],X [2],X [3]) ∈ R3, vector Y = (Y [1],Y [2],Y [3]) ∈ R3.
Result: value of 〈X ,Y 〉? ∈ R.

1 return starProduct(X, Y) = X[1] × Y[1] + X[2] × Y[3] + X[3] × Y[2].
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Algorithm 5: Consistent asymptotic variance estimator for γNn (f ).
Require: (Gp ; 0 ≤ p ≤ n − 1), T, IPS, test function f , Θ, SH, EVE and γ Nn (f ).
Result: asymptotic variance estimator σ̂ 2

γ Nn
(f ).

1 if T < n then
2 return 0;
3 else
4 Allocate memory for MeanG and MeanG2 ∈ Mn×1(R);
5 Normalizer = 0;
6 for p ∈ {0, 1, . . . ,n − 1} do
7 MeanG[p] = 1

N
∑N

i=1Gp (IPS[p, i]);
8 MeanG2[p] = 1

N
∑N

i=1Gp (IPS[p, i])2;
9 Normalizer = Normalizer ×MeanG[p];

10 end
11 ArrayEve = zeros(N , 1);
12 for i ∈ {1, 2, . . . ,N } do
13 ArrayEve[EVE[n, i]] = ArrayEve[EVE[n, i]] + f (IPS[n, i]) × Normalizer;
14 end
15 SumEve =

∑N
i=1 ArrayEve[i]2;

16 V‡ = N ×
(
γ Nn (f )

2 −
[ (
N × γ Nn (f )

)2
− SumEve

]
× N n−1

(N−1)n+1

)
;

17 Ṽ† = 0;
18 for p ∈ {0, 1, . . . ,n − 1} do
19 MatrixEve = zeros(N , 3);
20 for i ∈ {1, 2, . . . ,N } do
21 Index = Θ[p, i];
22 IndexPrime = Θ[p + 1, i];
23 F = f (IPS[n, i]) × Normalizer/MeanG[p];
24 MatrixEve[i, 1] = SH[p, IndexPrime] ×

√
MeanG2[p] × F;

25 MatrixEve[i, 2] = SH[p, IndexPrime] × N×(Gp (IPS[p,Index])×MeanG[p]−MeanG2[p])
N−1−N×MeanG[p]+Gp (IPS[p,Index]) × F;

26 MatrixEve[i, 3] = (1 − SH[p, IndexPrime]) ×MeanG[p] × F;
27 end
28 SumMatrixEve = zeros(N , 3);
29 for i ∈ {1, 2, . . . ,N } do
30 SumMatrixEve[EVE[n, i], :] = SumMatrixEve[EVE[n, i], :] +MatrixEve[i, :];
31 end
32 SumEve = 0;
33 for i ∈ {1, 2, . . . ,N } do
34 SumEve = SumEve + starProduct(SumMatrixEve[i], SumMatrixEve[i]);
35 end
36 for i ∈ {2, . . . ,N } do
37 MatrixEve[1, :] = MatrixEve[1, :] +MatrixEve[i, :];
38 end
39 SumCurrent = starProduct(MatrixEve[1, :],MatrixEve[1, :]) − SumEve;
40 Ṽ† = Ṽ† + SumCurrent × N n−3

(N−1)n−1 ;
41 end
42 end
43 return V‡ + Ṽ†.
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Algorithm 6: Consistent asymptotic variance estimator for ηNn (f ).
Require: (Gp ; 0 ≤ p ≤ n − 1), T, IPS, test function f , Θ, SH, EVE and ηNn (f ).
Result: asymptotic variance estimator σ̂ 2

ηNn
(f − ηNn (f )).

1 if T < n then
2 return 0;
3 else
4 Allocate memory for MeanG and MeanG2 ∈ Mn×1(R);
5 for p ∈ {0, 1, . . . ,n − 1} do
6 MeanG[p] = 1

N
∑N

i=1Gp (IPS[p, i]);
7 MeanG2[p] = 1

N
∑N

i=1Gp (IPS[p, i])2;
8 end
9 ArrayEve = zeros(N , 1);

10 for i ∈ {1, 2, . . . ,N } do
11 ArrayEve[EVE[n, i]] = ArrayEve[EVE[n, i]] + f (IPS[n, i]) − ηNn (f );
12 end
13 SumEve =

∑N
i=1 ArrayEve[i]2;

14 V‡ = SumEve × N n

(N−1)n+1 ;
15 Ṽ† = 0;
16 for p ∈ {0, 1, . . . ,n − 1} do
17 MatrixEve = zeros(N , 3);
18 for i ∈ {1, 2, . . . ,N } do
19 Index = Θ[p, i];
20 IndexPrime = Θ[p + 1, i];
21 F =

(
f (IPS[n, i]) − ηNn (f )

)
/MeanG[p];

22 MatrixEve[i, 1] = SH[p, IndexPrime] ×
√

MeanG2[p] × F;
23 MatrixEve[i, 2] = SH[p, IndexPrime] × N×(Gp (IPS[p,Index])×MeanG[p]−MeanG2[p])

N−1−N×MeanG[p]+Gp (IPS[p,Index]) × F;
24 MatrixEve[i, 3] = (1 − SH[p, IndexPrime]) ×MeanG[p] × F;
25 end
26 SumMatrixEve = zeros(N , 3);
27 for i ∈ {1, 2, . . . ,N } do
28 SumMatrixEve[EVE[n, i], :] = SumMatrixEve[EVE[n, i], :] +MatrixEve[i, :];
29 end
30 SumEve = 0;
31 for i ∈ {1, 2, . . . ,N } do
32 SumEve = SumEve + starProduct(SumMatrixEve[i], SumMatrixEve[i]);
33 end
34 for i ∈ {2, . . . ,N } do
35 MatrixEve[1, :] = MatrixEve[1, :] +MatrixEve[i, :];
36 end
37 SumCurrent = starProduct(MatrixEve[1, :],MatrixEve[1, :]) − SumEve;
38 Ṽ† = Ṽ† + SumCurrent × N n−3

(N−1)n−1 ;
39 end
40 end
41 return V‡ + Ṽ†.
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Algorithm 7: Unbiased non-asymptotic variance estimator for γNn (f ).
Require: (Gp ; 0 ≤ p ≤ n − 1), T, IPS, test function f , GENE, SH, EVE and γ Nn (f ).
Result: non-asymptotic variance estimator V N

n (f ).
1 if T < n then
2 return 0;
3 else
4 Allocate memory for MeanG, MeanG2 and MeanGdot2 ∈ Mn×1(R);
5 for p ∈ {0, 1, . . . ,n − 1} do
6 MeanG[p] = 1

N
∑N

i=1Gp (IPS[p, i]);
7 MeanG2[p] = 1

N
∑N

i=1Gp (IPS[p, i])2;
8 MeanGdot2[p] = (MeanG[p] −MeanG2[p]/N ) × N

N−1 ;
9 end

10 V(�) = 0;
11 for i ∈ {1, 2, . . . ,N − 1} do
12 for j ∈ {i + 1, . . . ,N } do
13 if EVE[n, i] , EVE[n, j] then
14 ProdCouple = f (IPS[n, i]) × f (IPS[n, j]);
15 Index1 = i, Index2 = j;
16 for p ∈ {0, 1, . . . ,n − 1} do
17 ParentIndex1 = GENE[n − p − 1, Index1];
18 ParentIndex2 = GENE[n − p − 1, Index2];
19 if SH[n − p − 1, Index1] = 1 & SH[n − p − 1, Index2] = 1 then
20 ProdCouple = ProdCouple ×MeanGdot2[n − p − 1];
21 else if SH[n − p − 1, Index1] = 1 & SH[n − p − 1, Index2] = 0 then

22 ProdCouple = ProdCouple ×MeanG[n − p − 1] ×
{
MeanG[n − p − 1] × N

N−1

− N ×
Gn−p−1(IPS[n−p−1,ParentIndex1])×MeanG[n−p−1]−MeanG2[n−p−1]
(N−1)×(N−1−MeanG[n−p−1]+Gn−p−1(IPS[n−p−1,ParentIndex1]))

}
;

23 else if SH[n − p − 1, Index1] = 0 & SH[n − p − 1, Index2] = 1 then

24 ProdCouple = ProdCouple ×MeanG[n − p − 1] ×
{
MeanG[n − p − 1] × N

N−1

− N ×
Gn−p−1(IPS[n−p−1,ParentIndex2])×MeanG[n−p−1]−MeanG2[n−p−1]
(N−1)×(N−1−MeanG[n−p−1]+Gn−p−1(IPS[n−p−1,ParentIndex2]))

}
;

25 else
26 ProdCouple = ProdCouple × N

N−1 ×MeanG[n − p − 1]2;
27 end
28 Index1 = ParentIndex1;
29 Index2 = ParentIndex2;
30 end
31 V(�) = V(�) + ProdCouple;
32 end
33 end
34 end
35 end
36 V(�) = 2 × V(�)/(N (N − 1));
37 return γ Nn (f )

2 − V(�).
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Above, we also provide Algorithm 7 to compute unbiased non-asymptotic variance
estimator for γ Nn (f ). A tremendous amount of e�ort has been spent in order to �nd an
O(nN ) time complexity algorithm, which, unfortunately, does not pay back. The Algo-
rithm 7 is of O(nN 2) time complexity, which means that even with a very little n, the
computation will be intractable when N > 106. In fact, the construction for the consis-
tent asymptotic variance estimators, i.e., Algorithm 5 and Algorithm 6, of O(nN ) time
complexity is highly nontrivial, and we failed to apply the same technique to reduce the
time complexity for the unbiased non-asymptotic variance estimator. Still, this estima-
tor may be useful for rare-event simulation problems or other applications whose target
measure is γn . One can thus take advantage of the parallel computing for relatively small
N . Though, the crude estimator is a by-product in this case, the average of this estimator
may still be typically more accurate and the statistical inference for the variance of the
variance estimator is also available if an unbiased variance estimator is provided. Note
that the lack-of-bias is not free in general, and we provide a relatively general condition in
Section 4.1. In fact, even without unbiased condition, this estimator multiplied by N is also
a consistent asymptotic variance estimator for γ Nn (f ). Another remark is that V‡ found
in Algorithm 5 and Algorithm 6 represent respectively the estimators NV N

n (f )γ
N
n (1)2 and

NV N
n (f − η

N
n (f )) provided in [LW18]. Due to the change of resampling scheme, some

modi�cations, namely, Ṽ† have to be taken into consideration. Now, we provide the time
complexity and space complexity of the algorithms in the SMC context. The multinomial
resampling scheme will be set as benchmark, with the variance estimators provided in
[LW18].

Estimation Time complexity Space complexity
ηNn (f ) or γNn (f ) O(nN ) O(N )

non-asymptotic variance of γNn (f ) O(nN ) O(N )
asymptotic variance of γNn (f ) O(nN ) O(N )
asymptotic variance of ηNn (f ) O(nN ) O(N )

Table 1: Time and space complexity under multinomial resampling scheme.

Estimation Time complexity Space complexity
ηNn (f ) or γNn (f ) O(nN ) O(N )

non-asymptotic variance of γNn (f ) O(nN 2) O(nN )
asymptotic variance of γNn (f ) O(nN ) O(nN )
asymptotic variance of ηNn (f ) O(nN ) O(nN )

Table 2: Time and space complexity under asymmetric resampling scheme.

We remark that we did not provide the algorithm to compute γ Nn (f ) and ηNn (f ) with
O(N ) space complexity, which is readily obtained with some modi�cation of Algorithm
1, since we mainly focus on the variance estimation problems. We can see from Table 1
and Table 2 that the main drawback of the presented setting is the space complexity and
the unbiased variance estimator for the non-asymptotic variance of γ Nn (f ). However, the
main computational consumption, in general, is brought by the resampling kernels M̊n
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at each iteration of the algorithm. If a cheap kernel
•
Mn is available, it is expected that

the asymmetric resampling scheme would dramatically reduce the computational cost of
the simulation of IPS. In fact, in real-world applications, the computational consumption
of the asymptotic variance estimators is negligible compared to the simulation of IPS. In
addition, the asymmetric setting also gives smaller variance in some speci�c situations,
such as AMS methods.

B Coalescent tree-based expansions
As we have seen in Theorem 2.2, the asymptotic variance becomes sophisticated when the
asymmetric resampling is implemented. Therefore, we need to develop a novel mathemat-
ical language in order to conduct calculations and eventually, to understand the structures
behind. In this section, we give a detailed development of the coalescent tree-based ex-
pansions encountered in the asymmetric SMC framework. Before going further, let us
list some de�nitions and properties associated to McKean-type Feynman-Kac kernel Qn,µ
within reach by some straightforward algebraic calculations in the following proposition.
For the sake of simpli�cation, these properties will be of constant use in the following
sections and may be applied without reference.

Proposition B.1. For any probability measure µ ∈ P(En−1) and test function f ∈ Bb (En),
we have the following properties:

(i) supx ∈En−1 Qn,µ (f )(x) ≤ 2 ‖ f ‖∞ .
(ii) We de�ne Rn,µ by

∀(x,A) ∈ En−1 × B(En), Rn,µ (x,A) := µ(Gn−1)
•
Qn(x,A) −Gn−1(x)µQ̊n(A), (15)

with the convention
∀x ∈ E0, R0,µ (x,A) := η0(A). (16)

Then, we have
Qn,µ (f )(x) = µQ̊n(f ) + Rn,µ (f )(x),

and
ηn−1Rn,ηn−1(f ) = 0.

(iii) We have

Qn,µ (f )(x)
2 = µQ̊n(f )

2 + Rn,µ (f )(x)
2 + 2µQ̊n(f )Rn,µ (f )(x),

as well as
ηn−1

(
Qn,ηn−1(f )

2) = ηn−1Q̊n(f )
2 + ηn−1

(
Rn,ηn−1(f )

2) . (17)

B.1 Original coalescent tree-based measures
First, let us recall the original coalescent tree-based expansion introduced in [CDMG11].
The following de�nition is adopted from the De�nition 3.1 of [DG19](Chapter 2), which
is essentially the same as the one introduced in [CDMG11]. A more general version for
the particle block of size greater than 2 can be found in [DMPR09].
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De�nition B.1. For any n′ ≥ n, we associate with any coalescence indicator b ∈ {0, 1}n′+1

the nonnegative measures Γbn ∈ M+(E
2
n) de�ned for any F ∈ Bb (E

2
n) by

Γbn (F ) := η⊗2
0 Cb0Q

⊗2
1 Cb1 · · ·Q

⊗2
n Cbn (F ).

When there is only one coalescence at, say, level p, we write Γ
(p)
n (F ) instead of Γbn (F ) (see

Figure 2). When there is no coalescence at all, that is b = (�), we have

Γ(�)n (F ) = γ
⊗2
n (F ).

. . . . . .

. . . . . .

Q1 Qp−1 Qp Qp+1 Qp+2 Qp+3 Qn

Q1 Qp−1 Qp

Qp+1

Qp+2 Qp+3 Qn

Figure 2: A representation of the original coalescent tree-based measure Γ
(p)
n .

Comparison of asymptotic variance. Now, we suppose that
•
Qn ≡ Q̊n for all n ≥

1. Let us go back to the form of the asymptotic variance σ 2
γn (f ) de�ned in (6). It is easy to

verify that
Γ
(p)
n (f

⊗2) = γp (1) γp
(
Qp,n(f )

2) . (18)

By applying (17) with some standard algebraic manipulations, we have

σ 2
γn (f ) =

n∑
p=0

(
Γ
(p)
n (f

⊗2) − Γ(�)n (f
⊗2)

)
−

n∑
p=1

γp−1(1)γp−1
(
Rp,ηp−1Qp,n(f )

2
)
. (19)

One may notice that the �rst term corresponds to the asymptotic variance of the multi-
nomial resampling scheme (see., e.g Theorem 2.1 of [DG19](Chapter 2)). Since the term

γp−1(1)γp−1
(
Rp,ηp−1Qp,n(f )

2
)

(20)

is nonnegative, we deduce that the choice
•
Qn ≡ Q̊n is always better than the multinomial

resampling scheme in terms of asymptotic variance. Moreover, we notice that the original
coalescent tree-based measures introduced in [CDMG11] and [DG19](Chapter 2) failed
to provide a full description of the asymptotic variance, even in this simple symmetric
case. This is the main di�culty compared to the multinomial resampling scheme, where
the alternative representation is free. Therefore, we need to develop some new tools to
understand the term given in (20).

B.2 Coalescent Feynman-Kac kernels
As we have seen in the last section, the original coalescent tree-based measures fail to
provide insights on the asymptotic variance σ 2

γn (f ). In order to go one step further, let us
go back to De�nition B.1. We consider the following alternative writing

Γbn (F ) := η⊗2
0 Cb0Q

⊗2
1︸  ︷︷  ︸

Qb0
1

Cb1Q
⊗2
2︸  ︷︷  ︸

Qb1
2

· · ·Cbn−1Q
⊗2
n︸     ︷︷     ︸

Qbn−1
n

Cbn (F ),
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which gives a similar de�nition as γn based on the partial semigroup structure of the
Feynman-Kac kernels:

Γbn (F ) := η⊗2
0 · Q

b0
1 · Q

b1
2 · · ·Q

bn−1
n Cbn (F ).

We say Qbn−1
n conserves the structure of coalescence if

∀bn−1 ∈ {0, 1}, Cbn−1Q
bn−1
n ≡ Qbn−1

n .

This simple observation gives an interesting idea on how we could possibly overcome the
di�culties encountered in the asymptotic variance representation: we change the con-
struction of the partial semigroup according to our asymmetric resampling scheme, in
order to establish the coalescent tree-based expansion of the asymptotic variance. The
�rst pair of replacement is for Q0

n and Q1
n . We de�ne

Q0
n :=

(
Q̊n + η

⊗2
n−1(1 ⊗ Gn−1)(

•
Qn − Q̊n)

) ⊗2
;

Q1
n := C1Q0

n .
(21)

This replacement is compatible with the notation above if
•
Qn ≡ Q̊n . Note that

η⊗2
n−1(1 ⊗ Gn−1) = ηn−1(Gn−1).

Next, we need to introduce several important coalescent Feynman-Kac kernels, which,
at the moment, is not as intuitive as the one introduced above. Their introduction is
motivated by an observation in the proof of a technical result (cf. Proposition C.9):

(i)
{
Q†,0n := Q0

n ;
Q†,1n := Q1

n − η
⊗2
n−1(G

⊗2
n−1)C1

•
Q ⊗2
n .

(ii)


Q̃†,0n := Q0

n ;
Q̃†,1n := η⊗2

n−1(1 ⊗ Gn−1)
[
(Gn−1 ×

•
Qn) ⊗ Q̊n + Q̊n ⊗ (Gn−1 ×

•
Qn)

]
+η⊗2

n−1(C1G
⊗2
n−1)

[ •
Q ⊗2
n −

•
Qn ⊗ Q̊n − Q̊n ⊗

•
Qn

]
.

(iii)
{
Q̌†,0n := Q0

n ;
Q̌†,1n := C1Q̃†,1n − η

⊗2
n−1(C1G

⊗2
n−1)C1

•
Q ⊗2
n .

(iv) ∀bn−1 ∈ {0, 1}, Q̃†,bn−1
n,(N ) := 1

N−1 Q̃
†,bn−1
n .

(v) ∀bn−1 ∈ {0, 1}, Q̌†,bn−1
n,(N ) := 1

N−1 Q̌
†,bn−1
n .

(vi)
{
Q‡,0n,(N ) := Q†,0n + Q̃

†,1
n,(N );

Q‡,1n,(N ) := Q†,1n + Q̌
†,1
n,(N ).

It is readily checked that they are all uniformly �nite transition kernels and that, except
the kernels with “˜”, namely,

Q̃†,bn−1
n and Q̃†,bn−1

n,N

all of the other kernels conserve the coalescence structure. This observation may be the
intrinsic reason why they play a particularly important role in variance related problems.

30



No matter how anecdotal it seems, we claim that these kernels are at the core of the
analysis of the variance related problems. Although we are not able to clarify the exact
purpose of the construction of these coalescent Feynman-Kac kernels at the moment, we
can explain, however, the logic of our notation: the number of daggers “†” indicates the
number of kernels between bn−1 = 0 and bn−1 = 1, that is changed from the original
de�nition (21). At the same time, the kernel for bn−1 = 1 is always replaced before the
kernel for bn−1 = 0. This is why all the kernels that have only one dagger share the same
Q0
n for the case bn−1 = 0. Since the number of particles N is also involved in the de�nition,

we add parenthesis “(N )” to specify the number of particles N , in order to di�erentiate
from the coalescent tree occupation measures. With a slight abuse of notation, when there
is no ambiguity, we omit the part “(N )” for simplicity. For example, we may use Q‡,bn to
denote Q‡,bn,(N ) . All the kernels de�ned from point (i) to point (v) are introduced to describe
the binary decomposition w.r.t. “+” in the de�nition of point (vi). We say that the kernels
de�ned above are in the class Q(2)n , or the kernels are of Q(2)n -class.

Next, we de�ne the generalized coalescent tree-based measures. In this article, they
will be referred to as the coalescent Feynman-Kac measures, by using the partial semi-
group properties of these coalescent Feynman-Kac kernels. For example, we denote

Qb
p,n := Qbp

p+1,n Qbp+1
p+2,n · · ·Q

bn−1
p,n ,

with the convention
Qbn−1
n,n := Q ⊗2

n,n .

De�nition B.2. For any n ≥ 1, N ≥ 2 and for any coalescence indicator b ∈ {0, 1}n+1, we
de�ne the signed �nite measures Γ‡,bn,(N ) by

∀F ∈ Bb (E
2
n), Γ‡,bn,(N )(F ) := η⊗2

0 Q‡,b0
1,(N ) Q

‡,b1
2,(N ) · · ·Q

‡,bn−1
n,(N ) Cbn (F ),

with the convention
Γ‡,b0,(N )(F ) = η

⊗2
0 Cb0 .

Similar as in De�nition B.1, when there is only one coalescence at level p, we write Γ‡,(p)n,(N )(F )

instead. When there is no coalescence , we denote Γ‡,(�)n,(N )(F ).

Meanwhile, we de�ne the Q
(2)
n̂ -class kernels by replacing all the η⊗2

n−1 in the de�nition
above with the empirical sub-probability measure

(ηNn−1)
�21τN ≥n−1 :=m�2(Xn−1)1τN ≥n−1.

In regard to the notation, all the “n” in the de�nition will be replaced by “n̂” correspond-
ingly:

(i)

Q0
n̂ :=

(
Q̊n + (η

N
n−1)

�2(1 ⊗ Gn−1)1τN ≥n−1(
•
Qn − Q̊n)

) ⊗2
;

Q1
n̂ := C1Q0

n̂ .

(ii)
{
Q†,0n̂ := Q0

n̂ ;
Q†,1n̂ := Q1

n̂ − (η
N
n−1)

�2(G⊗2
n−1)1τN ≥n−1C1

•
Q ⊗2
n̂ .
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(iii)


Q̃†,0n̂ := Q0

n̂ ;
Q̃†,1n̂ := (ηNn−1)

�2(1 ⊗ Gn−1)1τN ≥n−1
[
(Gn−1 ×

•
Qn̂) ⊗ Q̊n̂ + Q̊n̂ ⊗ (Gn−1 ×

•
Qn̂)

]
+(ηNn−1)

�2(C1G
⊗2
n−1)1τN ≥n−1

[ •
Q ⊗2
n̂ −

•
Qn̂ ⊗ Q̊n̂ − Q̊n̂ ⊗

•
Qn̂

]
.

(iv)
{
Q̌†,0n̂ := Q0

n̂ ;
Q̌†,1n̂ := C1Q̃†,1n̂ − (η

N
n−1)

�2(C1G
⊗2
n−1)1τN ≥n−1C1

•
Q ⊗2
n̂ .

(v) ∀bn−1 ∈ {0, 1}, Q̃†,bn−1
n̂,(N ) := 1

N−1 Q̃
†,bn−1
n̂ .

(vi) ∀bn−1 ∈ {0, 1}, Q̌†,bn−1
n̂,(N ) := 1

N−1 Q̌
†,bn−1
n̂ .

(vii)
{
Q‡,0n̂,(N ) := Q†,0n̂ + Q̃

†,1
n̂,(N );

Q‡,1n̂,(N ) := Q†,1n̂ + Q̌
†,1
n̂,(N ).

We remark that the kernels of Q
(2)
n̂ -class will not be used to de�ne the coalescent

tree-based measures, the introduction is purely for technical reasons (cf. Proposition C.9,
Proposition C.10, Lemma C.10 and Lemma C.11). They are eventually proved to be very
“close” to the Qn-class kernels (cf. Lemma C.12) by the propagation of chaos property of
the IPS (cf. Proposition C.5).

B.3 Binary decompositions
Next, we de�ne some auxiliary coalescent Feynman-Kac kernels using the same idea. Be-
fore that, we need some new notation to describe the coalescence structure that is a little
bit more complicated than the basic binary structure illustrated in Figure 2. For one coa-
lescence indicator b, we use |b | to denote the number of 1 in b, namely

|b | :=
n∑
p=0

��bp �� .
Using the same de�nition as above, for two coalescence indicators b and b ′ in {0, 1}n+1,
the notation |b − b ′ | denotes the number of di�erent elements between b and b ′. More
precisely,

|b − b ′ | =
n∑
p=0

���bp − b ′p ��� = #
{
p ∈ {0, 1, . . . ,n} : bp , b ′p

}
.

In particular, when |b | = 0, we denote (�) := (0, . . . , 0).
For two coalescence indicator b and b ′ in {0, 1}n+1, we say b ≤ b ′ if for any 0 ≤ p ≤ n,

we have bp ≤ b ′p . More over, if b ≤ b ′, and b , b ′, we say b < b ′. We also consider the set
of coalescence indicators Sn(b), S>n (b) and S̊n(b) de�ned as follows:

• Sn(b) :=
{
b ′ ∈ {0, 1}n+1 �� bn = b ′n} ;

• S>n (b) :=
{
b ′ ∈ {0, 1}n+1 �� b ′ > b and bn = b

′
n
}

;

• S̊n(b) := Sn(b)\{b}.
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Let us consider the following auxiliary coalescent Feynman-Kac kernels:
Q0 |0
n := Q†,0n

Q1 |0
n := Q̃†,1n

Q0 |1
n := Q̌†,1n

Q1 |1
n := Q†,1n

and


Q0 |0
n,(N ) := Q†,0n

Q1 |0
n,(N ) := Q̃†,1n,(N )

Q0 |1
n,(N ) := Q̌†,1n,(N )

Q1 |1
n,(N ) := Q†,1n

(22)

We remark that these kernels are constructed in respect of the decomposition of the partial
group structure w.r.t. the composition “+”, namely, at level n, we have

0 : Q‡,0n,(N )︸     ︷︷     ︸
0 |0:Q†,0n +Q̃

†,1
n,(N ):1 |0

and 1 : Q‡,1n,(N ),︸      ︷︷      ︸
1 |1:Q†,1n +Q̌

†,1
n,(N ):0 |1

(23)

whence the four cases which correspond to the four possible choices when the partial
semigroup structure is passing through the coalescent Feynman-Kac kernel Q‡,bn−1

n,(N ) . With
this in mind, we de�ne some auxiliary coalescent tree-based measures that are useful for
the decomposition mentioned above.

De�nition B.3. For any n′ ≥ n ≥ 1, N ≥ 2 and for any coalescence indicators b,b ′ ∈
{0, 1}n′+1, we de�ne the signed �nite measures Γb

′ |b
n and Γb

′ |b
n,N respectively by

∀F ∈ Bb (E
2
n), Γb

′ |b
n (F ) := η⊗2

0 Qb′0 |b0
1 Qb′1 |b1

2 · · ·Qb′n−1 |bn−1
n Cbn (F ),

and
∀F ∈ Bb (E

2
n), Γb

′ |b
n,(N )(F ) := η⊗2

0 Qb′0 |b0
1,(N ) Q

b′1 |b1
2,(N ) · · ·Q

b′n−1 |bn−1
n,(N ) Cbn (F ),

with the convention
Γb
′ |b

0 (F ) = Γb
′ |b

0,(N )(F ) := η⊗2
0 Cb0 .

We �nally de�ne all the coalescent tree-based measures as a generalization of the work
in [CDMG11]. The following proposition is a direct consequence of the introduction of

Q̃†,bn−1
n,(N ) =

1
N − 1 Q̃

†,bn−1
n and Q̌†,bn−1

n,(N ) =
1

N − 1 Q̌
†,bn−1
n .

Proposition B.2. For any n′ ≥ n ≥ 1, N ≥ 2, for any coalescence indicators b,b ′ ∈
{0, 1}n′+1 and for any test function F ∈ Bb (E

2
n), we have the following equalities:

(i) Γ̃†,bn,(N )(F ) =
( 1
N−1

) |b |
Γ̃†,bn (F );

(ii) ∀b ′ ∈ S>n (b), Γ
b′ |b
n,(N )(F ) =

( 1
N−1

) |b′ |− |b |
Γ̃b
′ |b

n (F );

(iii) Γb
′ |b

n,(N )(F ) =
( 1
N−1

) |b−b′ |
Γ̃b
′ |b

n (F ).

Since we have all the necessary ingredients at hand, we provide the most important

33



result of this section. For all test function F ∈ Bb (E
2
n), we have

Γ‡,bn,(N )(F ) =
∑

b′∈Sn (b)

Γb
′ |b

n,(N )(F )

=Γb |bn,(N )(F ) +
∑

b′∈S̊n (b)

Γb
′ |b

n,(N )(F )

=Γb |bn (F ) +
∑

b′∈S̊n (b)

(
1

N − 1

) |b′−b |
Γb
′ |b

n (F )

=Γ†,bn (F ) +
∑

b′∈S̊n (b)

(
1

N − 1

) |b′−b |
Γb
′ |b

n (F ).

(24)

In particular, for the case where b = (�), we have

Γ‡,(�)n,(N )(F ) =
∑

b′∈Sn (b)

Γb
′ |b

n,(N )(F )

=Γ(�) |(�)n,(N ) (F ) +
∑

b′∈S̊n ((�))

Γb
′ |(�)

n,(N ) (F )

=Γ†,(�)n (F ) +
∑

b′∈S>n ((�))

(
1

N − 1

) |b′ |
Γ̃†,b

′

n (F )

=Γ(�)n (F ) +
1

N − 1

n−1∑
p=0

Γ̃
†,(p)
n (F ) +

∑
b′∈S>n (b), |b′ | ≥2

(
1

N − 1

) |b′ |
Γ̃†,b

′

n (F ).

(25)

Taking into account that all the coalescent tree-based meaures are �nite signed measures,
the calculations above give the following proposition.

Proposition B.3. For any n′ ≥ n ≥ 1 and for any coalescent indicator b ∈ {0, 1}n′+1, we
have

∀F ∈ Bb (E
2
n), Γ‡,bn,(N )(F ) − Γ

†,b
n (F ) = O

(
1
N

)
.

In particular, we have

∀F ∈ Bb (E
2
n), Γ‡,(�)n,(N )(F ) − Γ

(�)
n (F ) −

1
N − 1

n−1∑
p=0

Γ̃
†,(p)
n (F ) = O

(
1
N 2

)
.

Remark. Above lies part of the reason why we have inhomogeneity in the notation w.r.t.
“‡” and “†” in De�nition 3.2. In fact, the strategy to prove the consistency given in Theo-
rem B.3 is divided into two steps, and the latter is done by Proposition B.3 above:

• Γ‡,bn,N (F )1τN ≥n − Γ
‡,b
n,(N )(F ) = OL1

(
1√
N

)
;

• Γ‡,bn,(N )(F ) − Γ
†,b
n (F ) = O

(
1√
N

)
.
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B.4 Coalescent tree occupation measures
In this section, we introduce the particle approximations of the coalescent tree-based mea-
sures discussed in the last section. To do this, we need to adopt some notation from
[DG19](Chapter 2). The readers are also referred to Appendix A.2 of [DG19](Chapter
2) to �nd more intuitions and the connection between the construction of these parti-
cle approximations and the Particle Markov Chain Monte Carlo methods. Due to the
fact that the underlying resampling scheme is changed, the analysis also becomes more
challenging. Fortunately, the basic idea remains the same: we exploit the information
encoded in the genealogy, and in addition, the information encoded in the survival his-
tory, to approximate the coalescent Feynman-Kac measures. The key idea is to collect
all the corresponding coalescent tree-type forms illustrated in Figure 2, and the coales-
cent tree occupation measures are constructed as weighted empirical terminal measures
of these particle blocks. The intuition of this procedure remains identical to the previ-
ous work in [DG19](Chapter 2). More precisely, the major di�erence is about the weights
mentioned above, which correspond to the potential function of the original IPS in many-
body Feynman-Kac models (cf. G(q)p (xp ) de�ned in A.1 of [DG19](Section 2.5.1)). Under
asymmetric resampling scheme, it is necessary to consider the in�uence of the survival
history. Thus, it is expected that the constructions become more sophisticated. Another
remark is on the measure Γ̃†,bn : since the related coalescent Feynman-Kac kernels do not
conserve the coalescence structure, its particle approximation also turns out to be a little
bit di�erent. Recall that λbp (ã

[2]
p , `

[2]
p ) ∈ {0, 1} is an indicator function de�ned by

λbp (ã
[2]
p , `

[2]
p ) := 1{bp=0}1{ã1

p=`
1
p,ã

2
p=`

2
p }
+ 1{bp=1}1{ã1

p=`
1
p=ã

2
p,`

2
p }
.

De�nition B.4 (Coalescent tree occupation measures). For any n′ ≥ n ≥ 0 and for any
coalescence indicator b ∈ {0, 1}n′+1, the random measure Γ̄bn,N is de�ned by

∀F ∈ Bb (E
2
n), Γ̄bn,N (F ) := N n−1

(N − 1)n+1

∑
`
[2]
0:n ∈((N )

2)×(n+1)

{
n−1∏
p=0

λbp (A
`
[2]
p+1
p , `[2]p )

}
Cbn (F )(X

`
[2]
n
n ).

The next theorem is brought from Proposition 4.2 of [DG19](Chapter 2), and the proof
is a slightly modi�ed version of the one given in Section 4.5 of [DG19] (Section 2.4.5).
It is one of the most important ingredients that connect the coalescent tree occupation
measures and non-asymptotic variance of Feynman-Kac IPS. It provides information on
the combinatorial structure of the IPS in regard to the coalescent tree occupation measures
Γ̄bn,N , which does not depend on the resampling scheme and regularity assumptions whilst
the IPS is well-de�ned. Namely, it reveals the essential combinatorial properties that apply
to all genealogy tree-based particle systems when each particle has only one parent. This
combinatorial property, in particular, is also valid in continuous-time settings and/or in
the frameworks with even more complex resampling schemes. A possible variant of the
current work is to replace multinomial resampling for the non-survival particles with
more advanced methods, such as residual resampling, strati�ed resampling and systematic
resampling, etc. In this article, it is the bridge between the asymptotic variance, non-
asymptotic variance, and eventually, the construction of our variance estimators. The
proof is given in Section C.6.
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Theorem B.1. For any test function F ∈ Bb (E
2
n), we have the following decompositions.

(ηNn )
⊗2(F )1τN ≥n =

∑
b ∈{0,1}n+1

(
N − 1
N

)n+1−|b | ( 1
N

) |b |
Γ̄bn,N (F )1τN ≥n, a.s .

and

(γ Nn )
⊗2(F )1τN ≥n =

∑
b ∈{0,1}n+1

(
N − 1
N

)n+1−|b | ( 1
N

) |b |
‡Γbn,N (F )1τN ≥n . a.s .

Below we list the most important lack-of-bias and convergence results of the coale-
cent tree occupation measures, serving as the particle approximations of the coalescent
Feynman-Kac measures. The proofs are divided into several technical results: they are di-
rect consequences of the combination of Lemma C.1, Lemma C.2, Proposition C.2, Propo-
sition C.3 and Proposition B.3, with some standard manipulations of bounded i.i.d. random
variables for the case n = 0, which is provided in Lemma C.4. The only remark is that for
any coalescent indicatorb and for any coalescent Feynman-Kac kernel, e.g., Q̃†,bn , we have,
by de�nition,

∀φ,ψ ∈ Bb (En), ∃f ,д ∈ Bb (En−1) s .t . Q̃†,bn (φ ⊗ψ ) ≡ f ⊗ д.

The property above also holds for Q‡,bn .

TheoremB.2 (Unbiasedness). Assume symmetric resampling, that is
•
Qn ≡ Q̊n for alln ≥ 1,

then, we have
E

[
Γ(�)n,N (F )1τN ≥n

]
= Γ(�)n (F ) = γ

⊗2
n (F ).

Theorem B.3 (Consistency). For any coalescence indicator b ∈ {0, 1}n+1 and any test func-
tion F ∈ Bb (En)

⊗2, we have

(i) Γ‡,bn,N (F )1τN ≥n − Γ
†,b
n (F ) = OL1

(
1√
N

)
;

(ii) Γ̃†,bn,N (F )1τN ≥n − Γ̃
†,b
n (F ) = OL1

(
1√
N

)
.

Remark. The notation

Γ‡,bn,N (F )1τN ≥n − Γ
†,b
n (F ) = OL1

(
1
√
N

)
,

means that 


Γ‡,bn,N (F )1τN ≥n − Γ
†,b
n (F )





L1
= O

(
1
√
N

)
.

The reader is referred to the beginning of Section C for details.
By linearity of signed measures, we have, on the event {τN ≥ n},

Γ‡,bn,N

( [
f − ηNn (f )

] ⊗2)
=Γ‡,bn,N (f

⊗2) − ηNn (f )
(
Γ‡,bn,N (1 ⊗ f ) + Γ‡,bn,N (f ⊗ 1)

)
+ ηNn (f )

2Γ‡,bn,N

(
1⊗2) ,
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as well as

Γ̃†,bn,N

( [
f − ηNn (f )

] ⊗2)
=Γ̃†,bn,N (f

⊗2) − ηNn (f )
(
Γ̃†,bn,N (1 ⊗ f ) + Γ̃†,bn,N (f ⊗ 1)

)
+ ηNn (f )

2Γ̃†,bn,N

(
1⊗2) .

Then, Theorem 2.1 gives
ηNn (f )1τN ≥n − ηn(f ) = op (1) ,

and
1/γ Nn (f )21τN ≥n − 1/γn(f )2 = op (1) .

Finally, combined to Proposition C.7 and Proposition C.8, we have the following corollary.

Corollary B.3.1. For any coalescence indicator b ∈ {0, 1}n+1 and any test function f ∈
Bb (En), we have

(i) Γ‡,bn,N

( [
f − ηNn (f )

] ⊗2
)
1τN ≥n/γ

N
n (1)2 − Γ

†,b
n

(
[f − ηn(f )]

⊗2) /γn(1)2 = Op

(
1√
N

)
;

(ii) Γ̃†,bn,N

( [
f − ηNn (f )

] ⊗2
)
1τN ≥n/γ

N
n (1)2 − Γ̃

†,b
n

(
[f − ηn(f )]

⊗2)/γn(1)2 = Op

(
1√
N

)
.

B.5 Feynman-Kac measures �ow in a random environment.
In this section, we provide another interpretation on the construction of the coalescent
tree occupation measures. One of the main message of [DG19](Chapter 2) is to provide
some intuition on the construction of the coalescent tree occupation measures using the
many-body Feynman-Kac models introduced in [DMKP16], by considering a Gibbs sam-
pler w.r.t. the original IPS and coupled particle block on a sophisticated path space. Then,
we de�ne the event that traps the desired coalescent particle block and eventually, we
construct the estimator given in De�nition B.4. This methodology gives the foundation
of the present work: De�nition 3.3 is also obtained by this procedure, though it is not
discussed in detail as in [DG19](Chapter 2). Now, let us look at this family of random
measures from a di�erent angle. We begin with some basic observations. To facilitate the
writings, let us �x a time horizon T ∈ N∗. The following discussion is valid on the event
{τN ≥ T } and 0 ≤ n ≤ T . Given WN

T (cf. Section C.1) and �xing `[2]n−1 ∈ (N )
2, we have

∀b ∈ {0, 1}T+1, ∀n ∈ [T ],
∑

`
[2]
n ∈(N )2

λbn−1(A
`
[2]
n
n−1, `

[2]
n−1) = 1.

Therefore, let us consider the state space (N )2, the matrix of size N (N − 1) × N (N − 1),
with some pre�xed ordering rule on the set (N )2, is denoted by(

λbn−1(A
`
[2]
n
n−1, `

[2]
n−1)

) (
`
[2]
n−1,`

[2]
n

)
∈((N )2)×2

, (26)

which can then be regarded as a random transition matrix, with

λbn−1(A
`
[2]
n
n−1, `

[2]
n−1)

denoting the probability of transition from the site `[2]n−1 to the site `[2]n . For the general
theory regarding to the Markov chain in a random environment, the readers are referred
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to [Cog80]. Returning to the de�nition of coalescent tree occupation measures Γ‡,bn,N , we
can �nd a similar semigroup structure: the initial distribution on the state space (N )2
is m�2([N ]) and the potential function on the site `[2]n−1 is G‡n(Xn−1), which is a constant
function given WN

T . Therefore, by denoting

H‡,bn [`
[2]
n−1, `

[2]
n ] := G‡,bn (Xn−1)λ

b
n−1(A

`
[2]
n
n−1, `

[2]
n−1),

and by respecting the composition law of the matrix multiplication, we de�ne(
H‡,bn · H

‡,b
n+1

)
[`[2]n−1, `

[2]
n+1] :=

∑
`
[2]
n ∈(N )2

H‡,bn [`
[2]
n−1, `

[2]
n ] × H

‡,b
n+1[`

[2]
n , `

[2]
n+1].

In addition, for any random measure Λn−1 on the state space (N )2, we de�ne(
Λn−1 · H‡,bn

)
[`[2]n ] :=

∑
`
[2]
n ∈(N )2

Λn−1[`
[2]
n−1] × H

‡,b
n [`

[2]
n−1, `

[2]
n ],

and for any random test function F on the state space (N )2, we de�ne

H‡,bn (F)[`
[2]
n−1] :=

∑
`
[2]
n ∈(N )2

H‡,bn [`
[2]
n−1, `

[2]
n ] × F[`

[2]
n ].

In particular, we denote

Λn(F) :=
∑

`
[2]
n ∈(N )2

Λn[`
[2]
n ] × F[`

[2]
n ].

Obviously, these composition law does not depend on the pre�xed ordering rule on the
set (N )2 since the sum “+” of the random variables is commutative. Now, we are able to
give an alternative representation of Γ‡,bn,N . We de�ne

Λ‡,bn [`
[2]
n ] :=m�2([N ]) · H‡,b1 · H

‡,b
2 · · ·H

‡,b
n [`

[2]
n ], (27)

with the conventionΛ‡,b0 :=m�2([N ]). Accordingly, the random test function Fbn is de�ned
by

Fbn[`
[2]
n ] := Cbn (F )(X

`
[2]
n
n ).

Consequently, we have
Λ‡,bn (F

b
n) = Γ‡,bn,N (F ). (28)

The random measure notation above is frequently used in the proof of technical results,
an explicit form can be found later in (56). Similarly, we denote

H̃†,bn [`
[2]
n−1, `

[2]
n ] := G̃†,bn−1(`

[2]
n−1:n,Bn−1,Xn−1)λ

b
n−1(A

`
[2]
n
n−1, `

[2]
n−1),

and
Λ̃†,bn [`

[2]
n ] :=m�2([N ]) · H̃†,b1 · H̃

†,b
2 · · · H̃

†,b
n [`

[2]
n ],

with the convention Λ̃†,b0 := m�2([N ]). Apart from the fact that this writing guided and
simpli�ed some of the proofs of the technical results, the main motivation is to provide
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a decomposition result similart to the one in (25), which is essentially due to the partial
R-algebra homomorphism. We de�ne H0

n := H̃†,0n . By de�nition, we have

H0
n[`
[2]
n−1, `

[2]
n ] +

1
N − 1 H̃

†,1
n [`

[2]
n−1, `

[2]
n ] = H‡,bn [`

[2]
n−1, `

[2]
n ],

which yields, for the associated random matrix,

H0
n +

1
N − 1 H̃

†,1
n = H‡,bn .

Therefore, we have the following decomposition:

Λ‡,(�)n (Fbn) =Λ
(�)
n (Fbn) +

∑
b′∈S>n ((�))

(
1

N − 1

) |b′ |
Λ̃†,b

′

n (F
b
n)

=Λ(�)n (Fbn) +
1

N − 1

n−1∑
p=0

Λ̃
†,(p)
n (Fbn) +

∑
b′∈S>n (b), |b′ | ≥2

(
1

N − 1

) |b′ |
Λ̃†,b

′

n (F
b
n),

which is equivalent to

Γ‡,(�)n,N (F ) =Γ
(�)

n,N (F ) +
∑

b′∈S>n ((�))

(
1

N − 1

) |b′ |
Γ̃†,b

′

n,N (F )

=Γ(�)n,N (F ) +
1

N − 1

n−1∑
p=0

Γ̃
†,(p)
n,N (F ) +

∑
b′∈S>n (b), |b′ | ≥2

(
1

N − 1

) |b′ |
Γ̃†,b

′

n,N (F ).

(29)

Thanks to Proposition C.8 and the decomposition (29) above, we have the following propo-
sition.

Proposition B.4. For any n′ ≥ n ≥ 1 and for any coalescent indicator b ∈ {0, 1}n′+1, we
have

∀F ∈ Bb (E
2
n),

(
Γ‡,(�)n,N (F ) − Γ

(�)

n,N (F ) −
1

N − 1

n−1∑
p=0

Γ̃
†,(p)
n,N (F )

)
1τN ≥n = OL2

(
1
N 2

)
.

B.6 E�cient estimator of Γ̃
†,(p)
n

As is mentioned before, we failed to provide an O(nN ) time complexity algorithm to com-
pute the term by term variance estimator and the non-asymptotic variance estimator pro-
vided in the previous sections. Therefore, we give a new asymptotic variance estimators
that can be computed with O(nN ) time complexity. The idea is to construct some new
coalescent tree occupation measures that are very “close” to Γ̃

†,(p)
n,N , which is easier to ob-

tain by some numerical techniques to reduce the computational costs. First, let us de�ne
a new sequence of random matrix on the event {τN ≥ n}. For any N > 1, we consider{

H̃‡,0n := H‡,0n = H̃†,0n +
1

N−1 H̃
†,1
n ;

H̃‡,1n := H̃†,1n .
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Next, using the same semigroup property of these random matrix and random test func-
tion as in (27) and (28), by consider the initial distribution m�2([N ]), we de�ne the new
coalescent tree occupation measure Γ̃‡,bn,N for each b ∈ {0, 1}n+1 by

∀F ∈ Bb (E
2
n), Γ̃‡,bn,N (F ) := Λ̃‡,bn (Fn) =m

�2([N ]) · H̃‡,b1 · H̃
‡,b
2 · · · H̃

‡,b
n (Fn),

with
Fn[`

[2]
n ] := F (X

`
[2]
n
n ).

Proposition B.5. For any test function F ∈ Bb (E
2
n) and for any p ∈ {0, 1, . . . ,n − 1}, we

have (
Γ̃
‡,(p)
n,N (F ) − Γ̃

†,(p)
n,N (F )

)
1τN ≥n = OL2

(
1
N

)
.

Finally, without loss of generality, we explain why the estimator given in (14) can be
computed with O(nN ) time complexity. In fact, the �rst part of the estimator

n∑
p=0

(
Γ
‡,(p)
n,N (f

⊗2) − Γ‡,(�)n,N (f
⊗2)

)
can be approximated by the variance estimator NV N

n (f )γ
N
n (1)2 proposed by Lee & White-

ley [LW18]. Hence, an O(nN ) algorithm is therefore available. It is then su�cient to
provide an O(nN ) algorithm to compute Γ̃

‡,(p)
n,N (f

⊗2). This is possible due to the homo-
geneity of the potential function G‡n(Xn) w.r.t. the di�erent indices `[2]n and the following
technical lemma.

Lemma B.1. Let (R,+,?) be a ring, and (Ei )i ∈[k ] be a disjoint partition of [N ] for some
k ≥ 1, then for any sequence (ai )i ∈[N ] composed by elements of R, we have the following
equality: ∑

i ∈Ep , j ∈Eq
0≤p,q≤k

ai ? aj =

(
N∑
s=1

as

)
?

(
N∑
s=1

as

)
−

k∑
r=1

∑
`∈Er

a` ? a`.

In our case, the partition (Ei )i ∈[k ] is the divided by the ancestor indices of the particles
of level n. The ring R is R3 and the “?” product refers to the operation

R3 × R3 3 (x,y, z)? (x ′,y ′, z ′) 7→ (x1 × x
′,y × z ′, z × y ′) ∈ R3,

which represents an intermediate step in the Algorithm 4, whose �nal output is

〈(x,y, z), (x ′,y ′, z ′)〉? := x1 × x
′ + y × z ′ + z × y ′.

This is useful in calculating the term

Λ̃
‡,(p)
n [`[2]n ]Fbn(`

[2]
n ).

In fact, for any test function F ∈ Bb (En)
⊗2, the term above can be a.s. reformulated as

∃(a`)`∈[N ] ∈
(
R3)N , s .t . ∀`[2]n ∈ (N )

2, Λ̃
‡,(p)
n [`[2]n ]Fbn(`

[2]
n ) =

〈
a`1

n
,a`2

n

〉
?
.
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Hence, by applying Lemma B.1, one can therefore compute Γ̃
‡,(p)
n,N (f

⊗2) with O(nN ) time
complexity. The details can be found in Algorithm 5, and the design of the Algorithm 6
is similar. We remark that when the homogeneity w.r.t. the potential functions for the
Feynman-Kac chain in a random environment is missing for more than �nite levels w.r.t.
n and N , we are not able to construct the ring homomorphism discussed above. This is
the intrinsic reason why we failed to apply this technique to reduce the time complexity
of the non-asymptotic variance estimator V N

n (f ). In the Algorithm 7, the corresponding
term

m�2([N ])H(�)0,n[`
[2]
n ]Fbn(`

[2]
n )

is therefore calculated by violently searching all the possible choices. This is why the
computation is of time complexity O(nN 2).

C Proofs
In this section, we list all the proofs in the present work. Some notation are gathered in
Section C.1, such as the formal de�nitions of the �ltrations frequently used in the proofs,
along with the most important martingale decompositions. A little plan on the organiza-
tion of the technical results is also provided. In order to facilitate the writing, the stochastic
bounds introduced in [Jan11] are intensely involved in our technical results. More pre-
cisely, we use frequently the notation Op, OLp and Oa .s . . Let (aN ;N ∈ N) be a sequence
of natural numbers, where N represents the number of particles in the IPS. The notation

XN = Op(aN )

means that the sequence (XN /aN ;N ∈ N) is tight, namely, for any ϵ > 0, there exists
0 < Mϵ < +∞, such that

lim sup
N ∈N

P (|XN /aN | > Mϵ ) < ϵ .

In particular, op(1) means convergence to 0 in probability. The notation

XN = OLp(aN )

means that the random variable XN /aN is uniformly bounded in Lp-norm w.r.t. N . The
notation

XN = Oa .s .(aN )

indicates that
P

({
ω ∈ Ω : sup

N ∈N
|XN (ω)/aN | < +∞

})
= 1.

Thanks to Cauchy-Schwartz inequality and Markov’s inequality, we have

XN = Oa .s .(aN ) =⇒ XN = OL2(aN ) =⇒ XN = OL1(aN ) =⇒ XN = Op(aN ).

We also remark that for all these 4 types of stochastic bounds, they are weaker than the
corresponding convergence. For example, if

XN /aN
L1/P
−−−−−→
N→∞

Const. < +∞,

one also has
XN = OL1/p(aN ).
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C.1 Martingales
We present some important martingales encountered in the analysis of SMC framework.
They are crucial to some of the technical resutls in this article. We also hope that the
similar construction may inspire the future work in di�erent settings. Before going into
details, let us de�ne some �ltrations associated to the Feynman-Kac IPS.

Filtrations. (FN
n )n≥0 denotes the �ltration that consists the information of the values

of particles. More precisely,

FN
−1 := {�,Ω} and ∀n ≥ 0, FN

n := σ (X0, . . . ,Xn).

If we only add one particle at each step, a more re�ned �ltration (EN
k )k≥0 can be de�ned

by
∀k ∈ [(n + 1)N ], EN

k = FN
pk−1 ∨ σ (X

1
pk , · · · ,X

ik
pk ),

where for any k ∈ [(n + 1)N ], we adopt the notaition

pk :=
⌊
k

N

⌋
and ik := k − pk × N .

Next, (GN
n )n≥0 denotes the �ltration that contains the genealogy of IPS, which is de�ned

by

∀n ∈ {−1, 0}, GN
n := FN

n and ∀n ≥ 1, GN
n := FN

n ∨ σ (A0, . . . ,An−1).

Finally, the �ltration that contains all the information including survival history of the
particle system are denoted by (WN

n )n≥0, namely,

∀n ∈ {−1, 0}, WN
n := FN

n and ∀n ≥ 1, WN
n := GN

n ∨ σ (B0, . . . ,Bn−1).

Moreover, as is used several times in some technical results, we also consider an updatated
�ltration (W

N
n )n≥0 de�ned by

W
N
n :=WN

n ∨ σ (Bn).

Proposition C.1. For any test function f ∈ Bb (n), we de�ne

fp,n := Qp,n(f ).

Then, (U N
k (f ))k≥1 de�ned by

U N
k (f ) := γ Npk (1)fpk ,n(X

ik
pk )1τN ≥pk − γ

N
pk−1(1)Qpk ,ηNpk −1

(fpk ,n)(X
ik
pk−1)1τN ≥pk−1

is a (EN
k )-martingale di�erence array.

Proof. The measurability is clear by de�nition. Since ‖Gn ‖∞ is bounded by 1, we have��U N
k (f )

�� ≤ 3 ‖ f ‖∞ , a.s . (30)

which gives the integrability. Then, by the fact that

1τN ≥pk−1 = 1τN ≥pk + 1τN =pk−1,
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one writes

E
[
U N
k (f )

�� EN
k−1

]
=E

[
γ Npk (1)fpk ,n(X

ik
pk )1τN ≥pk−1 − γ

N
pk−1(1)Qpk ,ηNpk −1

(fpk ,n)(X
ik
pk−1)1τN ≥pk−1

��� EN
k−1

]
− E

[
γ Npk (1)fpk ,n(X

ik
pk )1τN =pk−1

��� EN
k−1

]
︸                                          ︷︷                                          ︸

=0 a .s .

=1τN ≥pk−1E
[
γ Npk (1)fpk ,n(X

ik
pk ) − γ

N
pk−1(1)Qpk ,ηNpk −1

(fpk ,n)(X
ik
pk−1)

��� EN
k−1

]
=0. a.s .

This ends the veri�cation of Proposition C.1. �

Recall that, by de�nition, we have

Qn = Q̊n + ηn−1(Gn−1)(
•
Qn − Q̊n).

Hence,
γn−1Qn = γn,

which yields
γ0(f0,n) = γn(f ).

We denote
DN
p,n(f ) := γ Np−1(Qp̂ −Qp )(fp,n)1τN ≥p−1,

with
∀p ≥ 1, Qp̂ := Q̊p + η

N
p−1(Gp−1)1τN ≥p−1(

•
Qp − Q̊p ).

The interest of the martingale di�erence sequence de�ned above lies in the following
decomposition:

γ Nn (f )1τN ≥n − γn(f )

=

n∑
p=0

(
γ Np (fp,n)1τN ≥p − γ

N
p−1Qp,ηNp−1

(fp,n)1τN ≥p−1
)

=
1
N

(n+1)N∑
k=1

U N
k (f ) +

n∑
p=1

DN
p,n(f ),

(31)

taking into account the convention

γ N−1 = γ0 = η0 and Q0,ηN
−1
(f0,n)(x) ≡ η0(f0,n) = γn(f ).

Note that, for the case
•
Qp ≡ Q̊p , we have almost surely DN

p−1,n(f ) ≡ 0. In this case,(
γ Np Qp,n(f )

)
0≤p≤n

is a (Fp ; 0 ≤ p ≤ n)-martingale.

Now, to facilitate the writing, we �x a �nite time horizon T ∈ N∗, and a test func-
tion F ∈ Bb (ET ). As a natural extension, we discuss a similar family of bias-martingales
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decomposition brought by the partial semigroup structure of coalescent Feynman-Kac
kernels. Let us consider the term de�ned as follows:

X‡,bn (F ) := Γ‡,bn,N Q‡,bn,T (F )1τN ≥n .

First, the integrability is guaranteed by Proposition C.7. Then, thanks to Proposition C.9,
we get a almost sure equality which is very “close” to a martingale structure:

E
[
Γ‡,bn Q‡,bn,T (F )1τN ≥n

��� GN
n−1

]
= Γ‡,bn−1,NQ

‡,bn−1
n̂ Q‡,bn,T (F )1τN ≥n−1.

Note that, since Q‡,bnn+1 conserves the coalescence structure, the term Cbn disappears. We
denote

]D‡,bn (F ) := X‡,bn (F ) − E
[
X‡,bn (F )

��� GN
n−1

]
,

as well as
[D‡,bn (F ) := E

[
X‡,bn (F )

��� GN
n−1

]
− X‡,bn−1(F ).

Thanks to Lemma C.10, Lemma C.12, the Minkowski’s inequality and conservation of
coalescence structure, we deduce the following Lemma C.1. Then, the Proposition C.2 is
a direct application of Doob decomposition theorem.

Lemma C.1. For any test function F ∈ Bb (E2
T ) and any coalescence indicator b ∈ {0, 1}

T+1,
we have

n∑
p=1

]D‡,bn (F ) = OL1

(
1
√
N

)
,

and
n∑
p=1

[D‡,bn (F ) = OL1

(
1
√
N

)
.

Proposition C.2. For any test function F ∈ Bb (E
2
T ) and any coalescence indicator b ∈

{0, 1}T+1, the integrable process (X‡,bn (F ); 0 ≤ n ≤ T ) can be decomposed to a (GN
n ; 0 ≤ n ≤

T )-martingale (M‡,bn (F ); 0 ≤ n ≤ T ) , and a integrable predictable process (A‡,bn (F ); 0 ≤ n ≤
T ), respectively de�ned by

M‡,bn (F ) := X‡,b0 (F ) +
n∑
p=1

]D‡,bn (F ),

and

A‡,bn (F ) :=
n∑
p=1

[D‡,bn (F ).

Similarly, we also discuss the martingale decomposition associated to the measure
Γ̃†,bn,N . We de�ne

X̃†,bn (F ) := Γ̃†,bn,N Q̃†,bn,T (F )1τN ≥n,

as well as
]D̃†,bn (F ) := X̃†,bn (F ) − E

[
X̃†,bn (F )

��� WN
n−1

]
,

and
[D̃†,bn (F ) := E

[
X̃†,bn (F )

��� WN
n−1

]
− X̃†,bn−1(F ).
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Thanks to Proposition C.10, Lemma C.11 and Lemma C.12, we have the following results.
The unbiasedness given in Proposition C.3 is a direct consequence of the de�nition of
Q̃†,(�)n̂ and Q̃†,(�)n .

Lemma C.2. For any test function F ∈ Bb (E2
T ) and any coalescence indicator b ∈ {0, 1}

T+1,
we have

n∑
p=1

]D̃
†,b
n (F ) = OL1

(
1
√
N

)
,

and
n∑
p=1

[D̃
†,b
n (F ) = OL1

(
1
√
N

)
.

Proposition C.3. For any test function F ∈ Bb (E
2
T ) and any coalescence indicator b ∈

{0, 1}T+1, the integrable process (X̃†,bn (F ); 0 ≤ n ≤ T ) can be decomposed to a (WN
n ; 0 ≤ n ≤

T )-martingale (M̃†,bn (F ); 0 ≤ n ≤ T ) , and a integrable predictable process (Ã†,bn (F ); 0 ≤ n ≤
T ), respectively de�ned by

M̃†,bn (F ) := X̃†,b0 (F ) +
n∑
p=1

]D̃†,bn (F ),

and

Ã†,bn (F ) :=
n∑
p=1

[D̃†,bn (F ).

In particular, under symmetric resampling scheme, that is
•
Qn ≡ Q̊n for all n ∈ [T ], we also

have
[D̃
†,(�)
n (F ) ≡ 0, a.s .

which yields (
X̃
†,(�)
n (F )

)
0≤n≤T

is a (WN
n ; 0 ≤ n ≤ T )-martingale.

C.2 Veri�cation of asymptotic variance expansion
In this section, we verify the asymptotic variance expansion (8) given in Section 3.1. Recall
that, with the introduction of coalescent Feynman-Kac kernels, we have

σ 2
γn (f ) =

n∑
p=0

(
γ ⊗2
p C1Q

(�)
p,n(f

⊗2) − γ ⊗2
p−1C1Q

⊗2
p,ηp−1Q

(�)
p,n(f

⊗2)
)
.

By de�nition, since

γ ⊗2
n−1Q

0
n =

©­­«γn−1Q̊n + ηn−1(Gn−1)γn−1(
•
Qn − Q̊n)︸                           ︷︷                           ︸

≡0.

ª®®¬
⊗2

= γ ⊗2
n ,

we have
γ ⊗2
p C1Q

(�)
p,n(f

⊗2) = Γ
(p)
n (f

⊗2).

45



Next, for the latter term, since

Q(�)p,n(f
⊗2) =

(
Qp,n(f )

) ⊗2
,

by applying (17), we deduce that

∀p ∈ [n], γ ⊗2
p−1C1Q

⊗2
p,ηp−1Q

(�)
p,n(f

⊗2)

=γ ⊗2
p−1(C1(1))η⊗2

p−1Q̊
⊗2
p Q(�)p,n(f

⊗2)︸                                  ︷︷                                  ︸
Γ
(�)
n (f ⊗2)

+γ ⊗2
p−1C1R

⊗2
p,ηp−1Q

(�)
p,n(f

⊗2)

Note that
∀φ ∈ Bb (Ep ), Rp,ηp−1(φ)(x)

2

=ηp−1(Gp−1)
2 •
Qn(φ)(x)

2 +Gp−1(x)
2ηp−1Q̊p (φ)

2

− 2ηp−1(Gp−1)ηp−1Q̊p (φ)(Gp−1 ×
•
Qp )(ϕ)(x),

whence

γ ⊗2
p−1C1R

⊗2
p,ηp−1(φ

⊗2)

=ηp−1(Gp−1)
2γ ⊗2

p−1C1
•
Q ⊗2
n (φ

⊗2)

−

©­­­­­«
−ηp−1(G

2
p−1)γ

⊗2
p−1Q̊

⊗2
p︸                     ︷︷                     ︸

ηp−1(G2
p−1)γ

⊗2
p−1[Q̊

⊗2
p −

•
Qp ⊗Q̊p−Q̊p ⊗

•
Qp ]

+2ηp−1(Gp−1)γ
⊗2
p−1[Q̊p ⊗ (Gp−1 ×

•
Qp )]

ª®®®®®¬
(φ⊗2)

︸                                                                                                   ︷︷                                                                                                   ︸
γ ⊗2
p−1Q̃

†,1
p (φ⊗2)=Γ̃†,(�)p−1 Q̃†,1p (φ⊗2)

.

Replacing φ⊗2 by Q(�)p,n(f
⊗2) = Q†,(�)p,n (f

⊗2), we get

∀p ∈ [n], γ ⊗2
p−1C1Q

⊗2
p,ηp−1Q

(�)
p,n(f

⊗2)

=Γ(�)n (f
⊗2) − Γ̃†,(�)p−1 Q̃†,1p Q†,(�)p,n (f

⊗2) + ηp−1(Gp−1)
2γ ⊗2

p−1C1
•
Q ⊗2
p Q(�)p,n(f

⊗2)

=Γ(�)n (f
⊗2) − Γ̃

†,(p−1)
n (f ⊗2) + ηp−1(Gp−1)

2 Γ†,(�)p−1 C1
•
Q ⊗2
p Q(�)p,n(f

⊗2).

Taking into account that

∀p ∈ [n], Γ
(p−1)
n (f ⊗2) − ηp−1(Gp−1)

2 Γ†,(�)p−1 C1
•
Q ⊗2
p Q(�)p,n(f

⊗2) = Γ
†,(p−1)
n (f ⊗2),

and
Γ(n)n (f

⊗2) = Γ†,(n)n (f ⊗2),

as well as the convention (4) for the case p = 0, that writes

γ ⊗2
−1 C1Q

⊗2
0,η−1

Q(�)0,n(f
⊗2) = Γ(�)n (f

⊗2),

we �nally obtain the coalescent tree-based asymptotic variance expansion:

σ 2
γn (f ) :=

n∑
p=0

(
Γ
†,(p)
n (f ⊗2) − Γ(�)n (f

⊗2)
)
+

n−1∑
p=0

Γ̃
†,(p)
n (f ⊗2).
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C.3 Proof of Theorem 2.1
For any test function f ∈ Bb (En), the unbiased property

E
[
γ Nn (f )1τN ≥n

]
= γn(f )

for the case
•
Qn ≡ Q̊n is a direct consequence of the martingale decomposition (31). For

the almost sure convergence, the proof is done by induction. For the step 0, the almost
sure convergence of ηN0 is a direct consequence of law of large numbers for i.i.d. random
variables. For step n ≥ 1, we suppose that for each 0 ≤ p ≤ n − 1, we have

∀φp ∈ Bb (Ep ), ηNp (φp )
a .s .
−−−−−→
N→∞

ηNp (φp ).

We �rst check that
1
N

(n+1)N∑
k=1

U N
k (f )

a .s .
−−−−−→
N→∞

0. (32)

Taking into account that ��U N
k (f )

�� ≤ 3 ‖ f ‖∞ , a.s .

we have, thanks to Azuma-Hoe�ding inequality, for any α > 0,

P

(�����(n+1)N∑
k=1

U N
k (f )

����� > Nα

)
≤ 2 exp

{
−2Nα2

9(n + 1) ‖ f ‖2∞

}
.

Hence, the almost sure convergence (32) is then ensured by Borel-Cantelli lemma. On the
other hand, the induction hypothesis gives

∀p ∈ [n], DN
p,n(f )

a .s .
−−−−−→
N→∞

0,

which yields
n∑
p=1

DN
p,n(f )

a .s .
−−−−−→
N→∞

0.

The veri�cation of the almost sure convergence for γ Nn (f )1τN ≥n is then complete. The
almost sure convergence of ηNn is then trivial since for any test function f ∈ Bb (En), the
convention (1) allows the writing

ηNn (f )1τN ≥n =
γ Nn (f )1τN ≥n
γ Nn (1)1τN ≥n

.

C.4 Proof of Theorem 2.2
Lemma C.3. Let µN be an empirical on En−1, we suppose that there exists a probability
measure µ on En−1, such that for any test function ϕ ∈ Bb (En−1), one has

µN (ϕ)
a .s .
−−−−−→
N→∞

µ(ϕ).

Then, for any test function f ∈ Bb (En), we have the following almost sure convergence:
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(i) µN
(
Rn,µN (f )

2
)

a .s .
−−−−−→
N→∞

µ
(
Rn,µ (f )

2) ;

(ii) µN
(
Qn,µN (f )

2
)

a .s .
−−−−−→
N→∞

µ
(
Qn,µ (f )

2) .
Proof. Before starting the proof, let us recall that for any probability measure µ ∈ P(En−1)
and for any test function f ∈ Bb (En), we have

Qn,µ (f )(x) = µQ̊n(f ) + Rn,µ (f )(x)

with Rn,µ de�ned in (15). Basic algebraic mulipulation gives

Qn,µ (f )(x)
2 = µQ̊n(f )

2 + Rn,µ (f )(x)
2 + 2µQ̊n(f )Rn,µ (f )(x).

Recall that, by de�nition, we have

Rn,µN (f )(x) = µ
N (Gn−1)

•
Qn(f )(x) −Gn−1(x)µ

N Q̊n(f )

and
Rn,µN (f )(x)

2

=µN (Gn−1)
2 •
Qn(f )(x)

2 +Gn−1(x)
2µN Q̊n(f )

2 − 2µN (Gn−1)µ
N Q̊n(f )Gn−1(x)

•
Qn(f )(x),

whence we deduce that

µN
(
Rn,µN (f )

2
)

=µN (Gn−1)
2µN

( •
Qn(f )

2
)
+ µN (G2

n−1)µ
N

(
Q̊n(f )

)2
− 2µN (Gn−1)µ

N Q̊n(f )µ
N

(
Gn−1

•
Qn(f )

)
.

Since Gn−1, Q̊n(f ) ∈ Bb (En−1), Theorem 2.1 gives that

µN (Gn−1)
2µN

( •
Qn(f )

2
)
+ µN (G

2
n−1)µ

N Q̊n(f )
2 − 2µN (Gn−1)µ

N Q̊n(f )µN
(
Gn−1

•
Qn(f )

)
.

a .s .
−−−−−→
N→∞

µ(Gn−1)
2µ

( •
Qn(f )

2
)
+ µ(G2

n−1)µQ̊n(f )
2 − 2µ(Gn−1)µQ̊n(f )µ

(
Gn−1

•
Qn(f )

)
.

On the other hand, as

µ
(
Rn,µ (f )

2) = µ(Gn−1)
2µ

( •
Qn(f )

2
)
+ µ(G2

n−1)µQ̊n(f )
2 − 2µ(Gn−1)µQ̊n(f )µ

(
Gn−1

•
Qn(f )

)
.

we safely deduce that
µN

(
Rn,µ (f )

2) a .s .
−−−−−→
N→∞

µ
(
Rn,µ (f )

2) ,
which terminates the veri�cation for the point (i). Next, by standard calculation, we obtain

Qn,µN (f )(x)
2 = µN Q̊n(f )

2 + Rn,µN (f )(x)
2 + 2µN Q̊n(f )Rn,µN (f )(x),

whence

µN
(
Qn,µN (f )

2
)

=µN (1)µN Q̊n(f )
2 + µN

(
Rn,µN (f )

2
)
+ 2µN Q̊n(f )µ

N (Gn−1)µ
N (

•
Qn − Q̊n)(f ).

Finally, as Q̊n(f ),
•
Qn(f ) ∈ Bb (En−1), point (i) and Theorem 2.1 combined with the fact

that

µ
(
Qn,µ (f )

2) = µ(1)µQ̊n(f )
2 + µ

(
Rn,µ (f )

2) + 2µQ̊n(f )µ(Gn−1)µ(
•
Qn − Q̊n)(f )

ensure the desired convergence in point (ii). This closes the proof of Lemma C.3. �
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Now, let us start the proof of the CLT-type result forγ Nn 1τN ≥n and ηNn 1τN ≥n . The proof
is done by induction. The veri�cation of step 0 is trivial by the central limit theorem for
i.i.d. random variables. For step n ≥ 1, we suppose that, for any test function φp ∈ Bb (Ep ),
we have

∀0 ≤ p ≤ n − 1,
√
N

(
ηNp (φp )1τN ≥p − ηp (φp )

) d
−−−−−→
N→∞

N

(
0,σ 2

ηp (φp − ηp (φp ))
)
.

Again, let us go back to the decomposition (31). First, we prove that

1
√
N

(n+1)N∑
k=1

U N
k (f )

d
−−−−−→
N→∞

N

(
0,σ 2

γn

)
. (33)

In order to apply Theorem 2.3 in [McL74], one needs to verify that
• The boundness of Gn gives that

max
1≤k≤(n+1)N

���� 1
√
N
U N
k (f )

���� ≤ 3
√
N
‖ f ‖∞ , (34)

which shows that max1≤k≤(n+1)N

��� 1√
N
U N
k (f )

��� is uniformly bounded in L2-norm.

• From (34), one also gets that

max
1≤k≤(n+1)N

���� 1
√
N
U N
k (f )

���� P
−−−−−→
N→∞

0.

• For the asymptotic variance, we deduce that(
U N
k (f )

)2
=γ Npk (1)

2 fpk ,n(X
ik
pk )

21τN ≥pk︸                           ︷︷                           ︸
PN1 (k )

+γ Npk−1(1)2Qpk ,ηNpk −1
(fpk ,n)(X

ik
pk−1)

21τN ≥pk−1︸                                                  ︷︷                                                  ︸
PN2 (k )

− 2γ Npk−1(1)2ηNpk−1(Gpk−1)fpk ,n(X
ik
pk )Qpk ,ηNpk −1

(fpk ,n)(X
ik
pk−1)1τN ≥pk︸                                                                              ︷︷                                                                              ︸

PN3 (k )

First, let us prove that

1
N

(n+1)N∑
k=1

PN1 (k)
a .s .
−−−−−→
N→∞

n∑
p=0

γp (1)γp (f 2
p,n). (35)

In fact, by the construction of the Feynman-Kac IPS, we have

1
N

(n+1)N∑
k=1

PN1 (k) =
n∑
p=0

γ Np (1)γ Np (f 2
p,n).

Hence, Theorem 2.1 gives the desired convergence (35). Second, for the term con-
cerning P2(k), we would like to show that

1
N

(n+1)N∑
k=1

PN2 (k)
a .s .
−−−−−→
N→∞

n∑
p=0

γp−1(1)γp−1
(
Qp,ηp−1(fp,n)

2
)
. (36)
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Similar to the previous case, we deduce that

1
N

(n+1)N∑
k=1

PN2 (k) =
n∑
p=0

γ Np−1(1)γ Np−1

(
Qp,ηNp−1

(fp,n)
2
)
.

=

n∑
p=0

γ Np−1(1)2ηNp−1

(
Qp,ηNp−1

(fp,n)
2
)
.

The convergence (36) is then obtained by combining Theorem 2.1 and the point (ii)
of Lemma C.3. Then, for the term concerning P3(k), we prove that

1
N

(n+1)N∑
k=1

PN3 (k)
a .s .
−−−−−→
N→∞

n∑
p=0

γp−1(1)γp−1
(
Qp,ηp−1(fp,n)

2
)
. (37)

Notice that

E
[
PN3 (k)

���� FN
pk−1

]
=γ Npk−1(1)2ηNpk−1(Gpk−1)Qpk ,ηNpk −1

(fp,n)(X
ik
pk−1)E

[
f (X ik

pk )

���� FN
pk−1

]
=γ Npk−1(1)2 ηNpk−1(Gpk−1)Kpk ,ηNpk −1

(fp,n)(X
ik
pk−1)︸                                       ︷︷                                       ︸

Qpk ,ηNpk −1
(fp ,n )(X

ik
pk−1 )

Qpk ,ηNpk −1
(fp,n)(X

ik
pk−1)

=PN2 (k).

Hence, by exploiting the already proved convergence (36), it is su�cient to verify
that

1
N

(n+1)N∑
k=1

(
PN3 (k) − P

N
2 (k)

)
a .s .
−−−−−→
N→∞

0. (38)

Recall the �ltration (EN
k ;k ≥ 0) de�ned by

∀k ∈ [(n + 1)N ], EN
k = FN

pk ∨ σ (X
1
pk , · · · ,X

ik
pk ).

It is readily checked that (PN3 (k) − PN2 (k)) is a (EN
k )-martingale di�erence array. In

addition, the boundness of Gn ensures that��PN3 (k) − PN2 (k)�� ≤ 8 ‖ f ‖∞ . a.s .

Thanks to Heo�ding-Azuma inequality, one obtains

∀α > 0, P

(�����(n+1)N∑
k=1

PN3 (k) − P
N
2 (k)

����� ≥ Nα

)
≤ 2 exp

(
−α2N

32(n + 1) ‖ f ‖2∞

)
.

The almost sure convergence (38) is then followed from Borel-Cantelli lemma. In
conclusion, by combining (35),(36) and (37), one gets

1
N

(n+1)N∑
k=1

(
U N
k (f )

)2 a .s ./P
−−−−−→
N→∞

σ 2
γn (f ). (39)
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Next, the induction hypothesis, Lemma C.5 and Theorem 2.1 ensure that

DN
p,n(f ) =

[
ηNp−1(Gp−1) − ηp−1(Gp−1)

]
1τN ≥p−1︸                                        ︷︷                                        ︸

Op

(
1√
N

)
γ Np−1(

•
Qp −Qp )(fp,n)1τN ≥p−1,︸                               ︷︷                               ︸

op(1)

(40)

whence
n−1∑
p=0

DN
p,n(f ) = op

(
1
√
N

)
.

Slutsky’s lemma then gives the CLT-type convergence for γ Nn (f )1τN ≥n . The CLT-type
result for ηNn (f )1τN ≥n is a direct consequence of Slutsky’s lemma and the following de-
composition

√
N

(
ηNn (f )1τN ≥n − ηn(f )

)
1τN ≥n

=
1

γ Nn (1)
√
N

(
γ Nn (f − ηn(f ))1τN ≥n − γn(f − ηn(f ))

)
1τN ≥n .

This ends the proof of Theorem 2.2.

C.5 Proof of Proposition 3.1
First, we notice that

V N
n (f ) =

(
γ Nn (1)2 − Γ

‡,(�)
n,N

)
1τ ≥n +

(
Γ‡,(�)n,N − Γ

(�)

n,N

)
1τ ≥n . a.s .

We start by study the �rst term on the right-hand side of the equality above. Thanks to
Theorem B.1, and by considering the stochastic bound given in Proposition C.7, we have,
on the event {τN ≥ n},

(γ Nn )
⊗2(f ⊗2) =

(
N − 1
N

)n+1
Γ‡,(�)n,N (f

⊗2) +
1
N

(
N − 1
N

)n n∑
p=0

Γ
‡,(p)
n,N (f

⊗2) + OL2

(
1
N 2

)
.

Notice that(
N − 1
N

)n
= 1 − O

(
1
N

)
and

(
N − 1
N

)n+1
− 1 = −n + 1

N
+ O

(
1
N 2

)
,

which yields

N
(
γ Nn (1)2 − Γ

‡,(�)
n,N

)
1τ ≥n =

n∑
p=0

(
Γ
‡,(p)
n,N (f

⊗2) − Γ(�)n,N (f
⊗2)

)
+ OL2

(
1
N

)
. (41)

Next, by applying the decomposition given in Proposition B.4, we deduce that

N
(
Γ‡,(�)n,N − Γ

(�)

n,N

)
1τ ≥n =

(
1 + 1

N − 1

) n−1∑
p=0

Γ̃
†,(p)
n,N (F )1τ ≥n .

Combining the two parts, we �nally obtain the desired stochastic bound in (12). For (13),
the reasoning is similar by the same algebraic manipulations. The only remark is that due
to the “normalization” procedure, the stochastic bound w.r.t. L2-norm given by Proposi-
tion C.7 and Proposition C.8 will be replaced by a weaker version, namely,

Γ‡,bn,N (F )/γ
N
n (1)2 = Op(1) and Γ̃†,bn,N (F )/γ

N
n (1)2 = Op(1).

This is ensured by Theorem 2.1.
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C.6 Proof of Theorem B.1
On the event {τN < n}, it is clear that both equalities hold. On the event {τN ≥ n}, the
particle system is well-de�ned from level 0 to level n. Since(

N − 1
N

)n+1−|b | ( 1
N

) |b |
=

n∏
p=0

(N − 1)1−bp
N

,

we have(
N − 1
N

)n+1−|b | ( 1
N

) |b |
Γ̄bn,N (F )

=
N n−1

(N − 1)n+1

∑
`
[2]
0:n ∈((N )

2)×(n+1)

{
n∏
p=0

(N − 1)1−bp
N

} {
n−1∏
p=0

λbp (A
`
[2]
p+1
p , `[2]p )

}
Cbn (F )(X

`
[2]
n
n ).

Enumerating all the possibilities for the coalescence indicator b ∈ {0, 1}n+1 leads to∑
b ∈{0,1}n+1

{
n∏
p=0

(N − 1)1−bp
N

}
Γ̄bn,N (F )

=
∑

`
[2]
0 ∈(N )

2

· · ·
∑

`
[2]
n−1∈(N )

2

{
n−1∏
p=0

(
1
N
1
{A

`1
p+1
p =A

`2
p+1
p =`1

p,`
2
p }

+
N − 1
N

1
{A

`1
p+1
p =`1

p,A
`2
p+1
p =`2

p }

)}
(

N

N − 1

)n {
N − 1
N

m�2(Xn)C0(F ) +
1
N
m�2(Xn)C1(F )

}
.

To conclude, one just has to observe that, for each 0 ≤ p ≤ n − 1,∑
`
[2]
p ∈(N )2

(
1
N
1
{A

`1
p+1
p =A

`2
p+1
p =`1

p,`
2
p }

+
N − 1
N

1
{A

`1
p+1
p =`1

p,A
`2
p+1
p =`2

p }

)
=

N − 1
N
, a.s .

while, by (2),

N − 1
N

m�2(Xn)C0(F ) +
1
N
m�2(Xn)C1(F ) =m

⊗2(Xn)(F ) = (η
N
n )
⊗2(F ).

Multiplying both sides by γ Nn (1)2 gives the corresponding relation for (γ Nn )⊗2(F ).

C.7 Proof of Proposition B.5
For all N ≥ 2, let us consider the following auxiliary random matrix:

H̃‡,0 |0n := H̃†,0n ;
H̃‡,1 |0n := H̃†,1n ;
H̃‡,0 |1n := 0;
H̃‡,1 |1n := H̃†,1n .

and


H̃‡,0 |0n,(N ) := H̃†,0n ;
H̃‡,1 |0n,(N ) := 1

N−1 H̃
†,1
n ;

H̃‡,0 |1n,(N ) := 0;
H̃‡,1 |1n,(N ) := H̃†,1n .

Using the partial semigroup structure, we de�ne, for any coalescence indicators b and b ′,

∀F ∈ Bb (E
2
n), Γ̃‡,b

′ |b
n,N (F ) := Λ̃‡,b

′ |b
n (Fbn) =m

�2([N ]) · H̃‡,b
′ |b

1 · H̃‡,b
′ |b

2 · · · H̃‡,b
′ |b

n (Fn),
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with
Fn[`

[2]
n ] := F (X

`
[2]
n
n ).

Similarly, we also de�ne

∀F ∈ Bb (E
2
n), Λ̃‡,b

′ |b
n,(N ) (F

b
n) =m

�2([N ]) · H̃‡,b
′ |b

1,(N ) · H̃
‡,b′ |b
2,(N ) · · · H̃

‡,b′ |b
n,(N ) (Fn).

Remark that 0 = 0 × 1
N−1 . Hence, by de�nition, we have

Λ̃‡,b
′ |b

n,(N ) (F
b
n) =

(
1

N − 1

) |b′−b |
Λ̃‡,b

′ |b
n (Fbn). a.s .

Next, we consider the binary decomposition w.r.t. a coalescence indicator b. More pre-
cisely,

Λ̃‡,bn (Fn) =
∑

b′∈S(b)

Λ̃‡,b
′ |b

n,(N ) (Fn)

=Λ̃‡,b |bn,(N )(Fn) +
∑

b′∈S̊(b)

Λ̃‡,b
′ |b

n,(N ) (Fn)

=Λ̃‡,b |bn (Fn) +
∑

b′∈S̊(b)

Λ̃‡,b
′ |b

n,(N ) (Fn)

=Λ̃†,bn (Fn) +
∑

b′∈S̊(b)

(
1

N − 1

) |b′−b |
Λ̃‡,b

′ |b
n (Fn).

Therefore, it su�ces to verify that for any coalescence indicator b ′ and b, we have

Λ̃‡,b
′ |b

n (Fn) = OL2(1).

By de�nition, if there exists n0 ≥ 0 such that

b ′n0 = 0 and bn0 = 1,

we have
Λ̃‡,b

′ |b
n (Fn) ≡ 0.

If not, let us consider the mapping ϕ : {0, 1}2 7→ {0, 1} de�ned by

ϕ(0, 0) = 0, ϕ(1, 0) = 1 and ϕ(1, 1) = 1.

We also denote bϕ :=
(
ϕ(b0,b

′
0),ϕ(b1,b

′
1), . . . ,ϕ(bn,b

′
n)

)
. It is then easily checked that

Λ̃‡,b
′ |b

n (Fn) = Λ̃
†,bϕ
n (Fn) = Γ̃

†,bϕ
n (F ).

As a consequence, thanks to Proposition C.8, we have

Λ̃‡,b
′ |b

n (Fn) = OL2(1).

This is su�cient to end the proof of Proposition B.5.
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C.8 Technical results
In this section, we list some technical results in support of the proofs given in the following
sections. We remark that Lemma C.5 serves as a technical lemma, designed to prove
Proposition C.4 by induction. Since the latter one is proved to be true, the hypothesis
in Lemma C.5 can thus be removed. This is why in the Proposition C.5, it can be used
without induction argument. In the proof of Proposition C.7, we do not give the �nest
analysis, which is done later in the proof of Lemma C.10. This organization is due to
the complication of the notation in the present work. Since the rougher analysis in the
proof of Proposition C.7 is more straightforward than the �ner version in Lemma C.10,
we consider it to be a good warm-up to the techniques involved in this section, which are
highly repetitive in regard of the application of the pivotal decomposition (63).

Lemma C.4. For any test function f ,д ∈ Bb (E0) and for both b0 = 0 and b0 = 1, we have

(ηN0 )
⊗2Cb0(f ⊗ д)1τN ≥0 − η

⊗2
0 Cb0(f ⊗ д) = OL2

(
1
√
N

)
.

Proof. For the case b0 = 1, it is su�cient to verify that

∀φ ∈ Bb (E0), ηN0 (φ)1τN ≥0 − ηn(φ) = OL2

(
1
√
N

)
,

which is clear for the bounded i.i.d. random variables. More precisely, we have

E
[
ηN0 (f )(1τN ≥0 + 1 − 1) − η0(f )

]
=E

[
ηN0 (f )(1τN ≥0 − 1)

]
≤ ‖ f ‖∞ P

(
ηN0 (G0) = 0

)
.

Since E[ηN0 (G0)] = η0(G0), we have, thanks to Hoe�ding’s inequality for bounded i.i.d.
random variables,

P
(
ηN0 (G0) = 0

)
≤ P

(
ηN0 (G0) <

η0(G0)

2

)
︸                     ︷︷                     ︸

exponential decay rate.

,

which guarantees

E
[
ηN0 (f )1τN ≥0 − η0(f )

]
= O

(
1
N

)
, (42)

whence, by Cauchy-Schwartz inequality,

ηN0 (f )1τN ≥0 − η0(f )



L2 = O

(
1
√
N

)
.

For the case b0 = 0, since

(ηN0 )
⊗2Cb0(f ⊗ д)1τN ≥0 − η

⊗2
0 Cb0(f ⊗ д)

=ηN0 (f )
(
ηN0 (д) − η0(д)

)
1τN ≥0 + η0(д)

(
ηN0 (f ) − η0(f )

)
1τN ≥0,

The conclusion is also straightforward by considering the case b0 = 1. �
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Lemma C.5. If for all 0 ≤ p ≤ n − 1, we have

∀φp ∈ Bb (Ep ), ηNp (φp )1τN ≥p − ηp (φp ) = OL2

(
1
√
N

)
,

then, we also have

P (τN < n) = O

(
1
N

)
.

Proof. By de�nition, we have
P (τN < 0) = 0.

For n ≥ 1, thanks to the bias-martingale decomposition (31), the almost sure boundness
(30) and Azuma-Hoe�ding inequality, we have

P
(
γ Nn (1)1τN ≥n <

γn(1)
2

)
≤ P

(����� 1
N

(n+1)N∑
k=1

U N
k (1)

����� > γn(1)
4

)
︸                                 ︷︷                                 ︸

exponential decay rate w.r.t. N

+P

(����� n∑
p=1

DN
p,n(1)

����� > γn(1)
4

)

(43)
Then, we verify that

P

(����� n∑
p=1

DN
p,n(1)

����� > γn(1)
4

)
= O

(
1
N

)
.

By Markov’s inequality, one has

P

(����� n∑
p=1

DN
p,n(1)

����� > γn(1)
4

)
≤

4



∑n

p=1 D
N
p,n(1)





L1

γn(1)
≤

4
∑n
p=1




DN
p,n(1)





L1

γn(1)

Thanks to Cauchy-Schwartz inequality, one derives


DN
p,n(1)





L1

=




γ Np−1(1)ηNp−1(
•
Qp − Q̊p )

(
Qp,n(1)

) [
ηNp−1(Gp−1) − ηp−1(Gp−1)

]
1τN ≥p−1





L1

≤




γ Np−1(1)ηNp−1(
•
Qp − Q̊p )

(
Qp,n(1)

)
1τN ≥p−1





L2




(ηNp−1(Gp−1) − ηp−1(Gp−1)
)
1τN ≥p−1





L2
.

In addition, we also have


γ Np−1(1)ηNp−1(
•
Qp − Q̊p )

(
Qp,n(1)

)
1τN ≥p−1





L2

≤




γ Np−1(1)
(
ηNp−1

•
Qp

(
Qp,n(1)

)
1τN ≥p−1 − ηp−1

•
Qp

(
Qp,n(1)

) )
1τN ≥p−1





L2

+




γ Np−1(1)
(
ηNp−1Q̊p

(
Qp,n(1)

)
1τN ≥p−1 − ηp−1Q̊p

(
Qp,n(1)

) )
1τN ≥p−1





L2
.

Therefore, consider the hypothesis, and the fact that

γ Nn−1(1) ≤ 1, a.s .

we get 


DN
p,n(1)





L1
= O

(
1
N

)
,
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which yields

P
(
γ Nn (1)1τN ≥n <

γn(1)
2

)
= O

(
1
N

)
. (44)

Next, since

{τN < n} ⊂ {τN ≤ n} ={τN ≤ n − 1} ∪
{
γ Nn (1) = 0

}
⊂ {τN ≤ n − 1} ∪

{
γ Nn (1)1τN ≥n <

γn(1)
2

}
,

one derives that

P (τN ≤ n) ≤P (τN ≤ n − 1) + P
(
γ Nn (1)1τN ≥n <

γn(1)
2

)
.

By applying the inequality above recursively from n to 0, one �nally obtains

P (τN ≤ n) = O

(
1
N

)
.

�

Proposition C.4. For any test function f ∈ Bb (En), we have

ηNn (f )1τN ≥n − ηn(f ) = OL2

(
1
√
N

)
.

In particular, one also has

γ Nn (f )1τN ≥n − γn(f ) = OL2

(
1
√
N

)
.

Proof. The proof is done by induction. For n = 0, the stochastic bound is clear for the
bounded i.i.d. random variables. which is guaranteed by Lemma C.4. For step n ≥ 1, we
suppose that

∀φp ∈ Bb (Ep ), ηNp (φp )1τN ≥p − ηp (φp ) = OL2

(
1
√
N

)
.

We consider the event ΩN
n ⊂ Ω de�ned by

ΩN
n :=

{
γ Nn (1)1τN ≥n ≥

γn(1)
2

}
.

By the de�nition of the absorbing time τN , one has

ΩN
n =

{
γ Nn (1)1τN ≥n ≥

γn(1)
2 and τN ≥ n

}
⊂ {τN ≥ n},

whence
1ΩN

n
≤ 1τN ≥n .
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Then, by the fact that

1τN ≥n = 1τN ≥n − 1ΩN
n
+ 1ΩN

n
≤

���1τN ≥n − 1 + 1 − 1ΩN
n

��� + 1ΩN
n

≤
��1 − 1τN ≥n �� + ���1 − 1ΩN

n

��� + 1ΩN
n
≤ 21(ΩN

n )
c + 1ΩN

n
,

(45)

we obtain ��ηNn (f ) − ηn(f )�� 1τN ≥n ≤ ��ηNn (f ) − ηn(f )�� 1ΩN
n
+ 4 ‖ f ‖∞ 1(ΩN

n )
c . a.s .

Then, by applying the induction hypothesis, and thanks to a by-product (44) of Lemma
C.5, the inequality above leads to


(ηNn (f ) − ηn(f )) 1τN ≥n




L2
≤




(ηNn (f ) − ηn(f )) 1ΩN
n





L2
+ 4 ‖ f ‖∞

√
P

( (
ΩN
n
)c)︸                   ︷︷                   ︸

O
(

1√
N

)
.

It is thus su�cient to verify that


(ηNn (f ) − ηn(f )) 1ΩN
n





L2
= O

(
1
√
N

)
. (46)

By the fact that 1ΩN
n
1τN ≥n = 1ΩN

n
, we have the following equality:(

ηNn (f ) − ηn(f )
)
1ΩN

n
=

1
γ Nn (1)

(
γ Nn (f )1τN ≥n − γn(f )

)
1ΩN

n

−
ηn(f )

γ Nn (1)

(
γ Nn (1)1τN ≥n − γn(1)

)
1ΩN

n
.

Then, by the de�nition of the event ΩN
n , we have

1
γ Nn (1)

(
γ Nn (f )1τN ≥n − γn(f )

)
1ΩN

n
≤

2
γn(1)

(
γ Nn (f )1τN ≥n − γn(f )

)
1ΩN

n
. a.s .

As a consequence, to prove that

1
γ Nn (1)

(
γ Nn (f )1τN ≥n − γn(f )

)
1ΩN

n
= OL2

(
1
√
N

)
,

and
ηn(f )

γ Nn (1)

(
γ Nn (1)1τN ≥n − γn(1)

)
1ΩN

n
= OL2

(
1
√
N

)
.

One only needs to verify that

γ Nn (f )1τN ≥n − γn(f ) = OL2

(
1
√
N

)
. (47)

According to the bias-martingale decomposition (31), we have

γ Nn (f )1τN ≥n − γn(f ) =
1
N

(n+1)N∑
k=1

U N
k (f ) +

n∑
p=1

DN
p,n(f ),
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whence

N
(
γ Nn (f )1τN ≥n − γn(f )

)2

=
1
N

(
(n+1)N∑
k=1

U N
k (f )

)2

+ N

(
n∑
p=1

DN
p,n(f )

)2

+ 2
(n+1)N∑
k=1

U N
k (f )

n∑
p=1

DN
p,n(f ).

By de�nition, we have


DN
p,n(f )





L2
=




γ Np−1(1)ηNp−1(
•
Qp − Q̊p )

(
Qp,n(f )

) [
ηNp−1(Gp−1) − ηp−1(Gp−1)

]
1τN ≥p−1





L2

≤2 ‖ f ‖∞



(ηNp−1(Gp−1)1τN ≥p−1 − ηp−1(Gp−1)

)
1τN ≥p−1





L2
.

By applying the induction hypothesis, one obtains

DN
p,n(f ) = OL2

(
1
√
N

)
,

which gives
n∑
p=1

DN
p,n(f ) = OL2

(
1
√
N

)
,

and, by Cauchy-Schwartz inequality,(
n∑
p=1

DN
p,n(f )

)2

= OL1

(
1
N

)
.

Meanwhile, since
(
U N
k (f )

)
1≤k≤(n+1)N

is a martingale di�erence array, we have

1
N
E


(
(n+1)N∑
k=1

U N
k (f )

)2 =
1
N

(n+1)N∑
k=0

E
[
U N
k (f )

2] −−−−−→
N→∞

σ 2
γn (f ) < +∞,

where the convergence is a by-product (39) of the proof of Theorem 2.2 and dominated
convergence theorem. Hence, we obtain

(n+1)N∑
k=1

U N
k (f ) = OL2

(√
N

)
.

In summary, we have

NE
[��γ Nn (f )1τN ≥n − γn(f )��2]

=
1
N

(n+1)N∑
k=0

E
[
U N
k (f )

2] + 2E



�����(n+1)N∑
k=0

U N
k (f )

�����︸            ︷︷            ︸
OL2(

√
N )

����� n∑
p=1

DN
p,n(f )

�����︸         ︷︷         ︸
OL2

(
1√
N

)


+ 2NE


(

n∑
p=1

DN
p,n(f )

)2

︸            ︷︷            ︸
OL1( 1

N )


,
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which, thanks to Cauchy-Schwartz inequality, leads to

γ Nn (f )1τN ≥n − γn(f )

L2 = O

(
1
√
N

)
. (48)

This ends the veri�cation of (47) and the proof of this proposition.
�

Proposition C.5 (L2-propagation of chaos). For any test function f ,д ∈ Bb (En), we have

(ηNn )
�2(f ⊗ д)1τN ≥n − η

⊗2
n (f ⊗ д) = OL2

(
1
√
N

)
.

Proof. Before starting the proof, let us mention that by Minkowski’s inequality, for two
random variables X and Y , one has

X = OL2

(
1
√
N

)
and Y = OL2

(
1
√
N

)
=⇒ X + Y = OL2

(
1
√
N

)
.

Notice that

(ηNn )
�2(f ⊗д)1τN ≥n−η

⊗2
n (f ⊗д) =

(
(ηNn )

�2(f ⊗ д) − η⊗2
n (f ⊗ д)

)
1τN ≥n+η

⊗2
n (f ⊗д)(1−1τN ≥n).

Thanks to Proposition C.4 and Lemma C.5, one derives

E
[��η⊗2

n (f ⊗ д)(1 − 1τN ≥n)
��2] ≤ ‖ f ‖∞ ‖д‖∞ E

[
1 − 1τN ≥n

]
≤ ‖ f ‖∞ ‖д‖∞ P (τ < n)︸    ︷︷    ︸

O( 1
N )

,

which implies that

η⊗2
n (f ⊗ д)(1 − 1τN ≥n) = OL2

(
1
√
N

)
.

Next, considering the decomposition (2), we deduce that(
(ηNn )

�2(f ⊗ д) − η⊗2
n (f ⊗ д)

)
1τN ≥n =

N

N − 1

(
(ηNn )

⊗2(f ⊗ д) − η⊗2
n (f ⊗ д)

)
1τN ≥n

+
1

N − 1

(
ηNn (f д) + ηn(f )ηn(д)

)
1τN ≥n .

Concerning the term at the right-hand side of the equality above, we noticed that



 1
N − 1

(
ηNn (f д) + ηn(f )ηn(д)

)
1τN ≥n






L2
≤

2
N − 1 ‖ f ‖∞ ‖д‖∞ .

In addition, since(
(ηNn )

⊗2(f ⊗ д) − η⊗2
n (f ⊗ д)

)
1τN ≥n

=
(
ηNn (f )

[
ηNn (д) − ηn(д)

]
+ ηn(д)

[
ηNn (f ) − ηn(f )

] )
1τN ≥n

≤2
(
‖ f ‖∞ ∨ ‖д‖∞

) ( [
ηNn (f ) − ηn(f )

]
∨

[
ηNn (д) − ηn(д)

] )
1τN ≥n, a.s .
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it is then su�cient to verify that

∀f ∈ Bb (En),
(
ηNn (f ) − ηn(f )

)
1τN ≥n = OL2

(
1
√
N

)
. (49)

which is guaranteed by Proposition C.4 since(
ηNn (f ) − ηn(f )

)
1τN ≥n =

(
ηNn (f )1τN ≥n − ηn(f )

)
1τN ≥n . a.s .

The proof is then �nished. �

Proposition C.6 (Biasedness). For any test function f ∈ Bb (En), we have

E
[
ηNn (f )1τN ≥n − ηn(f )

]
= O

(
1
N

)
.

In particular, we also have

E
[
γ Nn (f )1τN ≥n − γn(f )

]
= O

(
1
N

)
.

Remark. Di�erent from the other technical results, the order of the bias given in this
proposition will not be used to prove the consistency of the variance estimator. They are
put in this section simply because we think the order of bias is important but not as rele-
vant in the present work, where the most results we discussed are “short term” asymptotic
properties of the IPS. In addition, we want to mention that by the same strategy, one can
obtain an explicit bound w.r.t. both n and N for the bias. The main di�erence from the
classic Feynman-Kac particle models discussed in [DM04] is the “lack-of-martingale” or,
said di�erently, the bias-martingale structure (cf. (31)). As a consequence, the decay rate
of the absorbing time is not exponential w.r.t. N any more. Instead, it is replace by O(1/
N ), as stated in Lemma C.5. This is why the order of bias w.r.t. N is not a�ected. The
“lack-of-martingale” structure also requires an induction in order to deal with the bias
term encountered in the bias-martingale decomposition (31). This technique is frequently
used in the adaptive SMC context (cf. [DG19](Chapter 2)).

Proof. The proof is done by induction. Thanks to a by-product (42) of Lemma C.4, we
have

E
[
ηN0 (f )1τN ≥0 − η0(f )

]
= O

(
1
N

)
.

For step n ≥ 1, we suppose that

∀φ ∈ Bb (En−1), E
[
ηNn−1(φ)1τN ≥n−1 − ηn−1(f )

]
= O

(
1
N

)
.

By the bias-martingale decomposition (31), it gives

∀ψ ∈ Bb (En), E
[
γ Nn (φ)1τN ≥n−1 − γn(f )

]
= O

(
1
N

)
. (50)
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Next, standard calculations give(
ηNn (f ) − ηn(f )

)
1τN ≥n =

(
γ Nn (f )

γ Nn (1)
−
γn(f )

γn(1)

)
1τN ≥n

=
γn(1)
γ Nn (1)

(
γ Nn (fn) − γn (fn)

)
1τN ≥n,

with
fn := 1

γn(1)
(f − ηn(f )).

Remark that, by de�nition,
γn (fn) = 0.

Then, by applying Lemma C.5, we noticed that

E
[(
ηNn (f )1τN ≥n − ηn(f )

)
−

(
ηNn (f ) − ηn(f )

)
1τN ≥n

]
=E

[(
ηNn (f )1τN ≥n − ηn(f )

) (
1 − 1τN ≥n

) ]
≤2 ‖ f ‖∞ P (τN < n) = O

(
1
N

)
.

Mutatis mutandis, one also has

E
[(
γ Nn (f )1τN ≥n − γn(f )

)
−

(
γ Nn (f ) − γn(f )

)
1τN ≥n

]
= O

(
1
N

)
.

Therefore, considering the induction hypothesis (50), we only have to show that(
γn(1)
γ Nn (1)

− 1
) (
γ Nn (fn) − γn (fn)

)
1τN ≥n

= −

(
γ Nn (1)1τN ≥n − γn(1)

γ Nn (1)

) (
γ Nn (fn) 1τN ≥n − γn (fn)

)
1τN ≥n = OL1

(
1
N

)
.

(51)

Recall that the event ΩN
n ⊂ Ω is de�ned by

ΩN
n :=

{
γ Nn (1)1τN ≥n ≥

γn(1)
2

}
,

and we have 1ΩN
n
≤ 1τN ≥n ≤ 21(ΩN

n )
c +1ΩN

n
. Notice that, by Lemma C.5 and the de�nition

of fn , one has (
γn(1)
γ Nn (1)

− 1
) (
γ Nn (fn) − γn (fn)

)
1(ΩN

n )
c

≤
��ηNn (f )1τN ≥n − ηn(f )�� 1(ΩN

n )
c +

��γ Nn (fn) 1τN ≥n − γn (fn)�� 1(ΩN
n )

c

≤4 ‖ f ‖∞ 1(ΩN
n )

c = OL1

(
1
N

)
.

(52)

In addition, by de�nition of ΩN
n , one gets

−

(
γ Nn (1)1τN ≥n − γn(1)

γ Nn (1)

) (
γ Nn (fn) 1τN ≥n − γn (fn)

)
1ΩN

n

≤
2

γn(1)
��γ Nn (1)1τN ≥n − γn(1)�� ��γ Nn (fn) 1τN ≥n − γn (fn)�� . a.s .
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Thus, thanks to a by-product (48) in the proof of Proposition C.4, we obtain(
γn(1)
γ Nn (1)

− 1
) (
γ Nn (fn) − γn (fn)

)
1ΩN

n
= OL1

(
1
N

)
. (53)

Finally, combining both (52) and (53) terminates the veri�cation of (51), which also ends
the proof of Proposition C.6.

�

Before proceeding further, we recall and introduce some notation that is used fre-
quently in the following technical results. For N ∈ N∗, we denote

[N ]
q
p :=

{
(i1, . . . , iq) ∈ [N ]

q : Card{i1, . . . , iq} = p
}
. (54)

In particular, we denote (N )q := [N ]qq . We also write(
(N )2

)×q := (N )2 × (N )2 × · · · × (N )2︸                          ︷︷                          ︸
q times

. (55)

With a slight abuse of notation, we admit that

((i, j),k) = (i, j,k). and ((i, j), (k, l)) = (i, j,k, l).

We also adopt the notation introduced in Section B.5. Fixing someb ∈ {0, 1}n+1, we denote

Λ‡,bn [`
[2]
n ] := 1

N (N − 1)
∑

`
[2]
0:n−1∈((N )

2)×n

{
n−1∏
p=0

G‡p(Xp)λ
b
p (A

`
[2]
p+1
p , `[2]p )

}
, (56)

with the convention
Λ‡,b0 [`

[2]
0 ] := 1

N (N − 1) .

It is readily checked that

Λ‡,bn [`
[2]
n ] =

∑
`
[2]
n−1∈(N )

2

Λ‡,bn−1[`
[2]
n−1]G

‡
n−1(Xn−1)λ

b
n−1(A

`
[2]
n
n−1, `

[2]
n−1).

This allows an alternative representation of Γ‡,bn,N :

∀F ∈ Bb (E
2
n), Γ‡,bn,N (F ) =

∑
`
[2]
n ∈(N )2

Λ‡n[`
[2]
n ]Cbn (F )(X

`
[2]
n
n ), (57)

which covers the case n = 0. Similarly, we also denote

Λ̃†,bn [`
[2]
n ] := 1

N (N − 1)
∑

`
[2]
0:n−1∈((N )

2)×n

{
n−1∏
p=0

G̃†,bpp (`[2]p :p+1,Bp,Xp)λ
(�)
p (A

`
[2]
p+1
p , `[2]p )

}
, (58)

with the convention
Λ̃†,b0 [`

[2]
0 ] := 1

N (N − 1) .
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We also have the decomposition

Λ̃†,bn [`
[2]
n ] =

∑
`
[2]
n−1∈(N )

2

Λ̃†,bn−1[`
[2]
n−1]G̃

†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
[2]
n
n−1, `

[2]
n−1). (59)

As is shown in the previous case (57), †Γ̃bn,N admits the following alternative representa-
tion:

∀F ∈ Bb (E
2
n), Γ̃†,bn,N (F ) =

∑
`
[2]
n ∈(N )2

Λ̃†,bn [`
[2]
n ]F (X

`
[2]
n
n ), (60)

which covers the case n = 0.

Proposition C.7. For any coalescence indicator b ∈ {0, 1}n+1, we have

Γ‡,bn,N (1)1τN ≥n = OL2(1).

In particular, for any test function F ∈ Bb (E
2
n), we also have

Γ‡,bn,N (F )1τN ≥n = OL1(1).

Proof. The proof is done by induction. For the step n = 0, it is clear since ‡Γb0,N (1) = 1.
For step n ≥ 1, we suppose that

sup
N >0

E
[
Γ‡,bn−1,N (1)

21τN ≥n−1
]
< +∞.

By the alternative representation (57), for all N ≥ 4, we have

E
[
Γ‡,bn,N (1)

2
1τN ≥n

��� GN
n−1

]
=

∑
(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2

Λ‡,bn−1[`
[2]
n−1]Λ

‡,b
n−1[`

′[2]
n−1]1τN ≥n−1

E


∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1

 ,
(61)

since the de�nition of G‡n−1 gives

E


∑
(`
[2]
n ,`

′[2]
n )∈((N ))×2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1

 1τN =n−1 = 0.

In order to simplify the notation, we may omit 1τN ≥n−1, which is GN
n−1-measurable, in the

rest of the proof. Before proceeding, we recall the conditional distribution of the selection
step. Given GN

n−1, we have

∀i ∈ [N ], Ai
n−1 ∼ Gn−1(X

i
n−1)δi (·) + (1 −Gn−1(X

i
n−1))

N∑
k=1

Gn−1(X
k
n−1)

Nm(Xn−1)(Gn−1)
δk (·).
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Hence, for any j ∈ [N ], we have

m(Xn−1)(Gn−1)
N∑
i=1

P
(
Ai
n−1 = j

�� GN
n−1

)
=m(Xn−1)(Gn−1)Gn−1(X

j
n−1) +

N∑
i=1
(1 −Gn−1(X

i
n−1))

Gn−1(X
j
n−1)

N

=Gn−1(X
j
n−1) ≤ 1. a.s .

(62)

With the notation introduced in (54) and (55), for N ≥ 4, we have the decomposition

((N )2)×2 =
(
((N )2)×2 ∩ [N ]42

)
∪

(
((N )2)×2 ∩ [N ]43

)
∪ (N )4. (63)

The rest of the proof consists in studying the term

E


∑
(`
[2]
n ,`

′[2]
n )∈((N ))×2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1


with respect to the decomposition above and the bound given in (62).

(i) Case: (`[2]n , `
′[2]
n ) ∈

(
(N )2

)×2
∩ [N ]42:

In this case, there are only two distinct random variables in the tuple(
A
`1
n
n−1,A

`2
n
n−1,A

`
′1
n
n−1,A

`
′2
n
n−1

)
.

Due to the symmetry of the particles, we �rst calculate the number of choices to
assign two di�erent random variables in the tuple above.

C2
4/2︸︷︷︸

possible choices to assign
two distinct couples in (4)4 .

− 2/2︸︷︷︸
limitation by ((N )2)×2.

= 2. (64)

More precisely, in this case, the two possible assignments are

A
`1
n
n−1 = A

`
′1
n
n−1, A

`2
n
n−1 = A

`
′2
n
n−1 and A

`1
n
n−1 = A

`
′2
n
n−1, A

`2
n
n−1 = A

`
′1
n
n−1.

Without loss of generality, we suppose that A`
[2]
n
n−1 are two distinct random variables,

with one of the two assignments above. Then, when `[2]n varies freely in (N )2, the
values of A`

′[2]
n
n−1 will be a.s. determined by the chosen assignment and the value of

A
`
[2]
n
n−1. By the fact that λbn−1 is indicator function, we have

0 ≤ λbn−1 ≤ 1.

In addition, since Gn varies on the interval [0, 1], we have

0 ≤ m(Xn)(Gn) ≤ 1. a.s .
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Now, let us deduce that

E


∑
`
[2]
n ∈(N )2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1


≤E


∑

`
[2]
n ∈(N )2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)

������ GN
n−1


≤

(
N

N − 1

)2
E


∑

`
[2]
n ∈(N )2

m(Xn−1)(Gn)
21{

A`1
n
n−1=`

1
n−1

}1{
A`2

n
n−1=bn−1`1

n−1+(1−bn−1)`2
n−1

}
������ GN

n−1

 .
By the conditional independence between A

`1
n
n−1 and A

`2
n
n−1, one deduces

E


∑
`
[2]
n ∈(N )2

m(Xn−1)(Gn)
21{

A`1
n
n−1=`

1
n−1

}1{
A`2

n
n−1=bn−1`1

n−1+(1−bn−1)`2
n−1

}
������ GN

n−1


=

∑
`
[2]
n ∈(N )2

E
m(Xn−1)(Gn)1{

A`1
n
n−1=`

1
n−1

}
������ GN

n−1


E

m(Xn−1)(Gn)1{
A`2

n
n−1=bn−1`1

n−1+(1−bn−1)`2
n−1

}
������ GN

n−1


≤

∑
`1
n ∈[N ]

E
m(Xn−1)(Gn)1{

A`1
n
n−1=`

1
n−1

}
������ GN

n−1

∑
`2
n ∈[N ]

E
m(Xn−1)(Gn)1{

A`2
n
n−1=bn−1`1

n−1+(1−bn−1)`2
n−1

}
������ GN

n−1

 .

(65)

Combined to (62), one gets

E


∑
`
[2]
n ∈(N )2

G‡n−1(Xn−1)λ
b
n−1(A

`
[2]
n
n−1, `

[2]
n−1)

������ GN
n−1

 ≤ 12 ×
N

N − 1 . a.s . (66)

which gives

E


∑
`
[2]
n ∈(N )2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)

������ GN
n−1

 ≤
(

N

N − 1

)2
. a.s . (67)

Considering the choices of assignments mentioned above, one �nally gets

E


∑

(`
[2]
n ,`

′[2]
n )∈((N ))×2∩[N ]42

G‡n(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������� GN
n−1


≤ 2 ×

(
N

N − 1

)2
. a.s .
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(ii) Case: (`[2]n , `
′[2]
n ) ∈

(
(N )2

)×2
∩ [N ]43:

In this case, there are three distinct random variables in the tuple(
A
`1
n
n−1,A

`2
n
n−1,A

`
′1
n
n−1,A

`
′2
n
n−1

)
.

Similar to the previous case, we calculate the number of choices to assign three
di�erent random variables in the tuple above.

C3
4︸︷︷︸

possible choices to divise
(4)4 into three distinct parts.

− 0︸︷︷︸
limitation by ((N )2)×2.

= 4. (68)

Let us �x one assignment. We suppose that `[2]n and `
′1
n are three distinct numbers.

Then, whilst (`[2]n , `
′1
n ) varies freely in (N )3, the value ofA`

′2
n
n−1 is a.s. determined by the

chosen assignment and the values of (A`
[2]
n
n−1,A

`
′1
n
n−1). Given GN

n−1, by the conditional
independence between A

`1
n
n−1,A

`2
n
n−1 and A

`
′1
n
n−1, one derives

E


∑
(`
[2]
n ,`

′1
n )∈(N )3

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1


≤E


∑

(`
[2]
n ,`

′1
n )∈[N ]3

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)1

{
A`
′1
n
n−1=`

′1
n−1

}
������ GN

n−1


≤

(
N

N − 1

)2
E


∑

(`
[2]
n ,`

′1
n )∈[N ]3

m(Xn−1)(Gn−1)
3λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)1

{
A`
′1
n
n−1=`

′1
n−1

}
������ GN

n−1


=

(
N

N − 1

)2 ∑
(`
[2]
n ,`

′1
n )∈(N )3

E
m(Xn−1)(Gn−1)1{

A`1
n
n−1=`

1
n−1

}
������ GN

n−1


E

m(Xn−1)(Gn−1)1{
A`2

n
n−1=bn−1`1

n−1+(1−bn−1)`2
n−1

}
������ GN

n−1


E

m(Xn−1)(Gn−1)1{
A`
′1
n
n−1=`

′1
n−1

}
������ GN

n−1


Again, combined with (62), one deduces

E


∑
(`
[2]
n ,`

′1
n )∈(N )3

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1

 ≤ 13×

(
N

N − 1

)2
.

Considering the number of assignments, we obtain

E


∑

(`
[2]
n ,`

′[2]
n )∈((N ))×2∩[N ]43

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������� GN
n−1


≤ 4 ×

(
N

N − 1

)2
.
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(iii) Case: (`[2]n , `
′[2]
n ) ∈ (N )

4:
In this case, all the random variables(

A
`1
n
n−1,A

`2
n
n−1,A

`
′1
n
n−1,A

`
′2
n
n−1

)
are distinct. Similarly, by the conditional independence of An−1 and the bound given
in (62), one gets

E


∑
(`
[2]
n ,`

′[2]
n )∈(N )4

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1


≤

(
N

N − 1

)2 ∑
(`
[2]
n ,`

′[2]
n )∈(N )4

E
[
m(Xn−1)(Gn)

4λbn−1(A
`
[2]
n
n−1, `

[2]
n−1)

���� GN
n−1

]

=

(
N

N − 1

)2 ∑
(`
[2]
n ,`

′[2]
n )∈(N )4

E
m(Xn−1)(Gn−1)1{

A`1
n
n−1=`

1
n−1

}
������ GN

n−1


E

m(Xn−1)(Gn−1)1{
A`2

n
n−1=bn−1`1

n−1+(1−bn−1)`2
n−1

}
������ GN

n−1


E

m(Xn−1)(Gn−1)1{
A`
′1
n
n−1=`

′1
n−1

}
������ GN

n−1


E

m(Xn−1)(Gn−1)1{
A`
′2
n
n−1=bn−1`

′1
n−1+(1−bn−1)`

′2
n−1

}
������ GN

n−1


≤14 ×

(
N

N − 1

)2

Combining the three cases discussed above, we safely deduce that

E


∑
(`
[2]
n ,`

′[2]
n )∈((N ))×2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)

������ GN
n−1


≤ (2 + 4 + 1)︸      ︷︷      ︸

=7

×

(
N

N − 1

)2
. a.s .

Now, let us go back to (61), by taking expectation on both sides, we have, for N ≥ 4,

E
[
Γ‡,bn,N (1)

21τN ≥n
]
≤7

(
N

N − 1

)2
E

[
Γ‡,bn−1,N (1)

21τN ≥n−1
]

≤
112
9 E

[
Γ‡,bn−1,N (1)

21τN ≥n−1
]
< +∞.

This closes the proof of Proposition C.7. �
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Proposition C.8. For any coalescence indicator b ∈ {0, 1}n+1, we have

Γ̃†,bn,N (1)1τN ≥n = OL2(1).

In particular, for any test function F ∈ Bb (E
2
n), we also have

Γ̃†,bn,N (F )1τN ≥n = OL1(1).

Remark. Before starting the proof of Proposition C.8, we would like to mention that the
techniques involved are similar but a little bit di�erent from the ones in the proof of Propo-
sition C.7. First, G̃†,1n is not nonnegative in general except for the case whereGn is indicator
function for all n ≥ 0. In addition, it is not obvious that

G̃†,1n (`
[2]
n:n+1,Bn,Xn)1τN ≥n

is bounded almost surely. In fact, it is easy prove that it is a.s. upper bounded by 3. How-
ever, there is no obvious reason that this term is a.s. lower bounded. This leads to the fact
that ���G̃†,1n (`

[2]
n:n+1,Bn,Xn)

��� 1τN ≥n
is not a.s. bounded in general, which is the main di�cult part in the following technical
results. Hence, unlike the previous case shown in the proof of Proposition C.7, one should
be extremely careful where dealing with the bound associated to the term���G̃†,1n (`

[2]
n:n+1,Bn,Xn)

��� λ(�)n (A
`
[2]
n+1
n , `[2]n )1τN ≥n .

Therefore, we introduce the following Lemma in order to facilitate the proof.

Lemma C.6. For any nonnegative real numbers a,b, c ∈ R, if a ≤ b, b > 0 and c ≥ 0, then,
we have

a

b
≤

a + c

b + c
.

Proof. Direct calculation gives

a + c

b + c
−
a

b
=
ab + bc − ab − ac

b(b + c)
=
(b − a)c

b(b + c)
≥ 0.

The conclusion follows. �

Lemma C.7. For any `[2]n and `[2]n+1 ∈ (N )
2, we have

B
`1
n+1
n (1 − B`2

n+1
n )m(Xn)(Gn)

Gn(X
`1
n
n )m(Xn)(Gn) −m(Xn(G

2
n))∑

k,`1
n

(
1 −Gn(X

k
n )

)
/N

,

and

B
`2
n+1
n (1 − B`1

n+1
n )m(Xn)(Gn)

Gn(X
`2
n
n )m(Xn)(Gn) −m(Xn(G

2
n))∑

k,`2
n

(
1 −Gn(X

k
n )

)
/N

are both well-de�ned on the event {τN ≥ n}.
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Proof. By symmetry of the de�nition, we only show that

B
`1
n+1
n (1 − B`2

n+1
n )m(Xn)(Gn)

Gn(X
`1
n
n )m(Xn)(Gn) −m(Xn(G

2
n))∑

k,`1
n

(
1 −Gn(X

k
n )

)
/N

is always well-de�ned on the event {τN ≥ n} with the convention (1). In fact, when∑
k,`1

n

(
1 −Gn(X

k
n )

)
= 0,

we have 1 −Gn(X
`2
n+1
n ) = 0 on the event {τN ≥ n}. By de�nition of B`2

n+1
n , we have

1 − B`2
n+1
n = 0.

This implies that, on the event {τN ≥ n}, we have

B
`1
n+1
n (1 − B`2

n+1
n )m(Xn)(Gn)

Gn(X
`1
n
n )m(Xn)(Gn) −m(Xn(G

2
n))∑

k,`1
n

(
1 −Gn(X

k
n )

)
/N

=B
`1
n+1
n (1 − B`2

n+1
n )m(Xn)(Gn)

Gn(X
`1
n
n )m(Xn)(Gn) −m(Xn(G

2
n))∑

k,`1
n

(
1 −Gn(X

k
n )

)
/N

1{∑
k,`1

n
(1−Gn (X k

n ))>0
} .

The conclusion follows. �

Lemma C.8. For any `[2]n ∈ (N )2, and for any coalescence indicator b ′ ∈ {0, 1}n+1 and
bn ∈ {0, 1}, we have almost surely

sup
N >1

E


∑

`
[2]
n+1∈[N ]

2

���G̃†,bnn (`[2]n:n+1,Bn,Xn)

��� λb′n (A`
[2]
n+1
n , `[2]n )1τN ≥n

������� WN
n

 < +∞.
In particular, we have

sup
N >1

E


∑

`
[2]
n+1∈(N )

2

���G̃†,bnn (`[2]n:n+1,Bn,Xn)

��� λ(�)n (A
`
[2]
n+1
n , `[2]n )1τN ≥n

������� WN
n

 < +∞.
Remark. We remark that in the de�nition of Γ̃†,bn,N , we do not need to investigate λb′n for a
di�erent coalescence indicator b ′ in general. The reason that b ′ is not set to be (�) lies in
the fact that Lemma C.8 is applied in the proof of Lemma C.9.

Proof. When not mentioned, the calculations of the random variables is only valid on the
event {τN ≥ n}. Recall that, given `[2]n ∈ (N )

2,

λb
′

n (A
`
[2]
n+1
n , `[2]n ) = 1{

A
`1
n+1
n =`1

n

}1{
A
`2
n+1
n =b′n`1

n+(1−b′n )`2
n

},
and given W

N
n , one has

∀` ∈ [N ], A`
n ∼ B`

nδ`(·) + (1 − B`
n)

N∑
k=1

Gn(X
k
n )

Nm(Xn)(Gn)
δk (·).
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By de�nition, one has���G̃†,1n (`
[2]
n:n+1,Bn,Xn)

��� ≤B`1
n+1
n B

`2
n+1
n m(Xn)(G

2
n)

+ B
`1
n+1
n (1 − B`2

n+1
n )m(Xn)(Gn)

���Gn(X
`1
n
n )m(Xn)(Gn) −m(Xn(G

2
n))

���∑
k,`1

n

(
1 −Gn(X

k
n )

)
/N

+ B
`2
n+1
n (1 − B`1

n+1
n )m(Xn)(Gn)

���Gn(X
`2
n
n )m(Xn)(Gn) −m(Xn(G

2
n))

���∑
k,`2

n

(
1 −Gn(X

k
n )

)
/N

,

whence���G̃†,1n (`
[2]
n:n+1,Bn,Xn)

���
≤B

`1
n+1
n B

`2
n+1
n m(Xn)(G

2
n) +

2B`1
n+1
n (1 − B`2

n+1
n )m(Xn)(Gn)∑

k,`1
n

(
1 −Gn(X

k
n )

)
/N

+
2B`2

n+1
n (1 − B`1

n+1
n )m(Xn)(Gn)∑

k,`2
n

(
1 −Gn(X

k
n )

)
/N

.

Since B`1
n
n and B

`2
n
n are both {0, 1}-valued, we deduce that

E


∑

`
[2]
n+1∈[N ]

2

���G̃†,1n (`
[2]
n:n+1,Bn,Xn)

��� λb′n (A`
[2]
n+1
n , `[2]n )1τN ≥n

������� WN
n


≤B

`1
n
n B

b′n`
1
n+(1−b′n )`2

n
n m(Xn)(G

2
n)1τN ≥n

+ B
`1
n
n

N∑
`2
n+1=1

(1 − B`2
n+1
n )

2Gn(X
b′n`

1
n+(1−b′n )`2

n
n )∑

k,`1
n

1 −Gn(X
k
n )

1τN ≥n

+ B
b′n`

1
n+(1−b′n )`2

n
n

N∑
`1
n+1=1

(1 − B`1
n+1
n )

2Gn(X
`1
n
n )∑

k,`2
n

1 −Gn(X
k
n )

1τN ≥n .

By applying Lemma C.6 and considering the convention (1), we have

E


∑

`
[2]
n+1∈[N ]

2

���G̃†,1n (`
[2]
n:n+1,Bn,Xn)

��� λb′n (A`
[2]
n+1
n , `[2]n )1τN ≥n

������� WN
n


≤B

`1
n
n B

b′n`
1
n+(1−b′n )`2

n
n m(Xn)(G

2
n)1τN ≥n

+ B
`1
n
n

N∑
`2
n+1=1

(1 − B`2
n+1
n )

2Gn(X
b′n`

1
n+(1−b′n )`2

n
n ) + 1 −Gn(X

`1
n
n )∑N

k=1 1 −Gn(X
k
n )

1τN ≥n

+ B
b′n`

1
n+(1−b′n )`2

n
n

N∑
`1
n+1=1

(1 − B`1
n+1
n )

2Gn(X
`1
n
n ) + 1 −Gn(X

`2
n
n )∑N

k=1 1 −Gn(X
k
n )

1τN ≥n .
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The simple fact 0 = Bkn(1 − Bkn)1τN ≥n ≤ Gn(X
k
n )(1 −Gn(X

k
n )1τN ≥n) for any k ∈ [N ] yields

E


∑

`
[2]
n+1∈[N ]

2

���G̃†,1n (`
[2]
n:n+1,Bn,Xn)

��� λb′n (A`
[2]
n+1
n , `[2]n )1τN ≥n

������� WN
n


≤

(
Gn(X

`1
n
n )Gn(X

`2
n
n ) ∨Gn(X

`1
n
n )

)
m(Xn)(G

2
n)1τN ≥n

+Gn(X
`1
n
n )

N∑
`2
n+1=1

(1 −Gn(X
`2
n+1
n ))

2Gn(X
b′n`

1
n+(1−b′n )`2

n
n ) + 1 −Gn(X

`1
n
n )∑N

k=1 1 −Gn(X
k
n )

1τN ≥n

+Gn(X
b′n`

1
n+(1−b′n )`2

n
n )

N∑
`1
n+1=1

(1 −Gn(X
`1
n+1
n ))

2Gn(X
`1
n
n ) + 1 −Gn(X

`2
n
n )∑N

k=1 1 −Gn(X
k
n )

1τN ≥n

=
(
Gn(X

`1
n
n )m(Xn)(G

2
n) + 4Gn(X

`1
n
n )Gn(X

b′n`
1
n+(1−b′n )`2

n
n ) + 2

)
1τN ≥n ≤ 7. a.s .

By de�nition, since���G̃†,0n (`
[2]
n:n+1,Bn,Xn)

��� = G‡n(Xn) +
1

N − 1

���G̃†,1n (`
[2]
n:n+1,Bn,Xn)

��� ,
the analysis for the case bn = 0 is the combination of the case bn = 1 and the similar rea-
soning in (65), namely, a direct consequence of (62). This terminates the proof of Lemma
C.8.

�

Lemma C.9. For any `[2]n ∈ (N )
2 and for any coalescence indicator b ∈ {0, 1}n+1, we have

almost surely

∀`2
n+1 ∈ [N ], sup

N >1
E


∑

`1
n+1∈[N ]

���G̃†,bnn (`[2]n:n+1,Bn,Xn)

��� 1
A
`1
n+1
n =`1

n

1τN ≥n

������ WN
n

 < +∞, (69)

as well as

∀`1
n+1 ∈ [N ], sup

N >1
E


∑

`2
n+1∈[N ]

���G̃†,bnn (`[2]n:n+1,Bn,Xn)

��� 1
A
`2
n+1
n =`2

n

1τN ≥n

������ WN
n

 < +∞.
Proof. By symmetry of the de�nition of G̃†,bnn (`[2]n:n+1,Bn,Xn), it su�ces to verify (69). In
fact, by simple observation, one has

1
A
`1
n+1
n =`1

n

= 1
A
`1
n+1
n =`1

n

1
A
`1
n+1
n =`1

n

≤ 1
A
`1
n+1
n =`1

n

N∑
`2
n+1=1

1
A
`2
n+1
n =`1

n

. a.s .

Therefore, one only needs to show that

sup
N >1

E


∑

`
[2]
n+1∈[N ]

2

���G̃†,bnn (`[2]n:n+1,Bn,Xn)

��� λ(n)n (A
`
[2]
n+1
n , `[2]n )1τN ≥n

������� WN
n

 < +∞,
which, by taking b ′ = (n), is guaranteed by Lemma C.8. This terminates the proof of
Lemma C.9. �
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Proof of Proposition C.8. Now, we start the proof by induction. It is trivial for the step
n = 0 as Γ̃†,b0,N (1) = 1. For step n ≥ 1, we suppose that

sup
N >0

E
[
Γ̃†,bn−1,N (1)

21τN ≥n−1
]
< +∞.

By the alternative representation (60), for all N ≥ 4, we have

E
[
Γ̃†,bn,N (1)

2
1τN ≥n

��� WN
n−1

]
=

∑
(`
[2]
n−1,`

′[2]
n−1)∈((N ))

×2

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1

E


∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃

†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)

λ(�)n−1(A
`
[2]
n
n−1, `

[2]
n−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)

���� WN
n−1

]
,

(70)

since by de�nition of G̃†,bn−1
n−1 , one has

E


∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃

†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)

λ(�)n−1(A
`
[2]
n
n−1, `

[2]
n−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)

���� WN
n−1

]
1τN =n−1 = 0.

As we have mentioned several times, in the following part of the proof, we omit the no-
tation 1τN ≥n−1. Similar as in the proof of Proposition C.7, the rest of the reasoning relies
on the decomposition (63).

(i) Case: (`[2]n , `
′[2]
n ) ∈

(
(N )2

)×2
∩ [N ]42:

In this case, there are only two distinct random variables in the tuple(
A
`1
n
n−1,A

`2
n
n−1,A

`
′1
n
n−1,A

`
′2
n
n−1

)
.

As we have already mentioned in (64), there are 2 possible assignments such that
we can �x two distinct random variables within the tuple above. Without loss of
generality, we suppose that A`1

n
n−1 and A

`
′1
n
n−1 are two distinct random variables, and

we �x one of these two assignments. Then, when (`1
n, `

′1
n ) varies freely in (N )2, the

values of A`2
n
n−1 and A

`
′2
n
n−1 will be a.s. determined by the chosen assignment and the
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values of A`1
n
n−1 and A

`
′1
n
n−1.

E


∑

(`
[2]
n ,`

′[2]
n )∈((N )2)×2∩[N ]42

G̃†,bn−1
n−1 (`

[2]
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†,bn−1
n−1 (`

′[2]
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λ(�)n−1(A
`
[2]
n
n−1, `

[2]
n−1)λ

(�)

n−1(A
`
′[2]
n
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n−1)

���� WN
n−1

]
=E
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n ,`
′1
n )∈(N )2

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃
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′[2]
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λ(�)n−1(A
`
[2]
n
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(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)

���� WN
n−1

]
(71)

Given W
N
n−1, by the conditional independence of A`1

n
n−1 and A

`
′1
n
n−1 under the chosen

assignment, we have

E

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(`1
n ,`
′1
n )∈(N )2

G̃†,bn−1
n−1 (`

[2]
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`
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n−1)λ

(�)

n−1(A
`
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���� WN
n−1

]
≤E
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`1
n ∈[N ]

���G̃†,bn−1
n−1 (`

[2]
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��� 1{
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1
n−1

}
������ WN

n−1


E


∑

`
′1
n ∈[N ]

���G̃†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)

��� 1{
A`
′1
n
n−1=`

′1
n−1

}
������ WN

n−1

 .
(72)

Then, by applying Lemma C.9, one gets

E


∑
(`1
n ,`
′1
n )∈(N )2

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃

†,bn−1
n−1 (`
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���� WN
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]
= Oa .s .(1).

Since the number of di�erent assignments 2 does not depend on N , one deduces that

E


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[2]
n ,`

′[2]
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(ii) Case: (`[2]n , `
′[2]
n ) ∈

(
(N )2

)×2
∩ [N ]43:
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In this case, there are three distinct random variables in the tuple(
A
`1
n
n−1,A

`2
n
n−1,A

`
′1
n
n−1,A

`
′2
n
n−1

)
.

As is calculated in (68), the number of assignment is 4 at this time. Let us �x one
assignment. We suppose that A`

[2]
n
n−1 and A

`
′1
n
n−1 are three distinct random variables.

Then, whilst (`[2]n , `
′1
n ) varies freely in (N )3, the value ofA`

′2
n
n−1 is a.s. determined by the

chosen assignment and the values of (A`
[2]
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n−1,A

`
′1
n
n−1). Given W
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n−1, by the conditional

independence between A
`1
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n−1,A

`2
n
n−1 and A

`
′1
n
n−1, one derives
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Thanks to Lemma C.8 and Lemma C.9, we get
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Again, since the number of the di�erent assignments 4 does not depend on N , we
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(iii) Case: (`[2]n , `
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(75)

Combining the three cases above, we �nally obtain

sup
N >0
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Returning to (70) and induction hypothesis, the veri�cation of step n is then �nished, so
as the proof of Proposition C.8.
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Proposition C.9. For any test function F ∈ Bb (E
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n), we have
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Thus, it su�ces to show that
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Alghough it may seem unnecessary, we recall that we have almost surely
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(i) Case bn−1 = 0:
Notice that

N − 1
N

E


∑
`
[2]
n ∈(N )2

G‡n(Xn−1)λ
b
n−1(A

`
[2]
n
n−1, `

[2]
n−1)Cbn (F )(X

`
[2]
n
n )

������ WN
n−1


=B

`1
n−1
n−1 B

`2
n−1
n−1m

⊗2(Xn−1)(G
⊗2
n−1)

•
M ⊗2

n Cbn (F )(X
`
[2]
n−1
n−1 )

+
1
N
B
`1
n−1
n−1

∑
`2
n,`

1
n−1

(1 − B`2
n
n−1)m(Xn−1)(Gn−1)(

•
Mn ⊗ Q̊n)Cbn (F )(X

`
[2]
n−1
n−1 )

+
1
N
B
`2
n−1
n−1

∑
`1
n,`

2
n−1

(1 − B`1
n
n−1)m(Xn−1)(Gn−1)(Q̊n ⊗

•
Mn)Cbn (F )(X

`
[2]
n−1
n−1 )

+
1
N 2

∑
`
[2]
n ∈(N )2

(1 − B`1
n
n−1)(1 − B

`2
n
n−1)Q̊

⊗2
n Cbn (F )(X

`
[2]
n−1
n−1 ),

which yields

E


∑
`
[2]
n ∈(N )2

G‡n−1(Xn−1)λ
b
n−1(A

`
[2]
n
n−1, `

[2]
n−1)Cbn (F )(X

`
[2]
n
n )

������ WN
n−1


=

N

N − 1m
⊗2(Xn−1)(G

⊗2
n−1)

•
Q ⊗2
n Cbn (F )(X

`
[2]
n−1
n−1 )

+
1

N − 1
∑

`2
n,`

1
n−1

(1 −Gn−1(X
`2
n
n−1))m(Xn−1)(Gn−1)(

•
Qn ⊗ Q̊n)Cbn (F )(X

`
[2]
n−1
n−1 )

+
1

N − 1
∑

`1
n,`

2
n−1

(1 −Gn−1(X
`1
n
n−1))m(Xn−1)(Gn−1)(Q̊n ⊗

•
Qn)Cbn (F )(X

`
[2]
n−1
n−1 )

+
1

N (N − 1)
∑

`
[2]
n ∈(N )2

(1 −Gn−1(X
`1
n
n−1))(1 −Gn−1(X

`2
n
n−1))Q̊

⊗2
n Cbn (F )(X

`
[2]
n−1
n−1 ),

(79)

First, by decomposition (2), we noticed that
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Then, we deduce that
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The exactly same manipulations also give
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Now, let us put (80), (81) and (82) back into (79). One derives
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which, by de�nition, turns out to be the following equality:
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(ii) Case bn−1 = 1:
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By the similar calculations done in the previous case, one has
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Then, taking into account the equality (81), one obtains a similar equation as (83):

E


∑
`
[2]
n ∈(N )2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)Cbn (F )(X

`
[2]
n
n )

������ WN
n−1

 1τN ≥n−1

=

{[
m�2(Xn−1)(G

⊗2
n−1)C1

•
Q ⊗2
n +m

�2(Xn−1)(Gn−1 ⊗ (1 −Gn−1))C1
( •
Qn ⊗ Q̊n

)
+m�2(Xn−1)(Gn−1 ⊗ (1 −Gn−1))C1

(
Q̊n ⊗

•
Qn

)
+m�2(Xn−1)((1 −Gn−1)

⊗2)C1Q̊
⊗2
n

]
−m�2(Xn−1)(G

⊗2
n−1)C1

•
Q ⊗2
n

+
1

N − 1

[
m(Xn−1)(Gn−1)C1

(
(Gn−1 ×

•
Qn) ⊗ Q̊n + Q̊n ⊗ (Gn−1 ×

•
Qn)

)
−m(Xn−1)(G

2
n−1)C1

( •
Qn ⊗ Q̊n + Q̊n ⊗

•
Qn

) ]}
(Cbn (F ))(X

`
[2]
n−1
n−1 )1τN ≥n−1.

(86)

78



By de�nition, we �nally obtain that on the event {τN ≥ n − 1},
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Combining the two cases, we conclude that we have proved that
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Thus, it su�ces to show that
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We omit the notation 1τN ≥n−1 in the rest of the proof. Recall that
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Hence, with the de�nition (78), standard calculation gives
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whence
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By de�nition, this gives the desired equality (90).
�

Lemma C.10. For any test function F ∈ Bb (E2
n) and any coalescent indicator b ∈ {0, 1}n+1,

we have
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Proof. Thanks to Cauchy-Schwartz inequality and Proposition C.9, it su�ces to verify
that
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Next, thanks to the alternative representation (57), one derives that

E
[
Γ‡,bn,N (F )

2
1τN ≥n

��� GN
n−1

]
=

∑
(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2

Λ‡,bn−1[`
[2]
n−1]Λ

‡,b
n−1[`

′[2]
n−1]1τN ≥n−1

E


∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

G‡n−1(Xn−1)
2λbn−1(A

`
[2]
n
n−1, `

[2]
n−1)λ

b
n−1(A

`
′[2]
n
n−1, `

′[2]
n−1)Cbn (F )

⊗2(X
`
[2]
n
n ,X

`
′[2]
n
n )

������ GN
n−1

 .
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whence we deduce that
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one has
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Therefore, it su�ces to verify that
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(
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Together, we prove both of the two convergence above by induction, as the proofs share
the same mechanism. Without loss of generality, we suppose that F ≡ 1. For n = 0,
standard calculations give

R1(N ) = R2(N ) =
4N − 6
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For n ≥ 1, we suppose that
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Now, it is time to go back to the decomposition (63). As is mentioned for many times, we
may omit the notation 1τN ≥n−1.
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such that two distinct random variables can be found in(
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Now, we explain why there is an indicator function
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The arguments above will be applied repeatedly in the rest of the proof. Next, by
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where C1 denotes positive constant which does not depend on N . Meanwhile, by
the same procedure, we also have∑
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Again, by similar argument given in the proof of Proposition C.7, we get
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Combining both cases, one gets
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‡,b
n−1[`

′[2]
n−1]1τN ≥n−1(C2 +C

′
2)1{#{`1

n−1,`
2
n−1,`

′1
n−1,`

′2
n−1<4}}

=
∑

(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2\(N )4

Λ‡,bn−1[`
[2]
n−1]Λ

‡,b
n−1[`

′[2]
n−1]1τN ≥n−1(C2 +C

′
2). a.s .

The desired convergence (92) are therefore guaranteed by the induction hypothesis by
taking the expectation on both sides of the inequalities above. This is the end of the proof
of Lemma C.10.

�

Lemma C.11. For any test function F ∈ Bb (E2
n) and any coalescent indicator b ∈ {0, 1}n+1,

we have

Γ̃†,bn,N (F )1τN ≥n − Γ̃
†,b
n−1,N Q̃

†,bn−1
n̂ (F )1τN ≥n−1 = OL1

(
1
√
N

)
.

Proof. Before starting, we mention that this proof bears a resemblance to the one of
Lemma C.10. Thanks to Cauchy-Schwartz inequality, it is su�cient to verify that

E
[
Γ̃†,bn,N (F )

21τN ≥n − Γ̃
†,b
n−1,N Q̃

†,bn−1
n̂ (F )21τN ≥n−1

]
= O

(
1
N

)
.

Again, similar to the equation (70), by the alternative representation (60) and decomposi-
tion (59), we deduce that

E
[
Γ̃†,bn,N (F )

2
1τN ≥n

��� WN
n−1

]
=

∑
(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1

E

[ ∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃

†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)

λ(�)n−1(A
`
[2]
n
n−1, `

[2]
n−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)F

⊗2(X
`
[2]
n
n ,X

`
′[2]
n
n )

����� WN
n−1

]
.

Similar to the previous case, we denote

R1(N ) :=
∑

(`
[2]
n ,`

′[2]
n )∈((N )2)×2\(N )4

E
[
Λ̃†,bn [`

[2]
n ]Λ̃

†,b
n [`

′[2]
n ]F

⊗2(X
`
[2]
n
n ,X

`
′[2]
n
n )

���� GN
n−1

]
1τN ≥n,
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and
R2(N ) :=

∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2\(N )4

E
[
Λ̃†,bn [`

[2]
n ]F (X

`
[2]
n
n )

���� WN
n−1

]
E

[
Λ̃†,bn [`

′[2]
n ]F (X

`
′[2]
n
n )

���� WN
n−1

]
1τN ≥n,

as well as
R3(N ) :=

∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

E
[
Λ̃†,bn [`

[2]
n ]F (X

`
[2]
n
n )

���� WN
n−1

]
E

[
Λ‡,bn [`

′[2]
n ]F (X

`
′[2]
n
n )

���� WN
n−1

]
1τN ≥n

Thanks to the conditional independence between A
`
[2]
n
n−1, B`

[2]
n
n−1 and A

`
′[2]
n
n−1, B`

′[2]
n
n−1 given WN

n−1,
we have

R3(N ) − R2(N )

=
∑

(`
[2]
n ,`

′[2]
n )∈(N )4

E
[
Λ̃†,bn [`

[2]
n ]F (X

`
[2]
n
n )

���� WN
n−1

]
E

[
Λ̃†,bn [`

′[2]
n ]F (X

`
′[2]
n
n )

���� WN
n−1

]
1τN ≥n

=
∑

(`
[2]
n ,`

′[2]
n )∈(N )4

E
[
Λ̃†,bn [`

[2]
n ]Λ̃

†,b
n [`

′[2]
n ]F

⊗2(X
`
[2]
n
n ,X

`
′[2]
n
n )

���� WN
n−1

]
1τN ≥n,

from which we get

E
[
Γ̃†,bn,N (F )

2
1τN ≥n

��� WN
n−1

]
= R1(N ) − R2(N ) + R3(N ). a.s .

Notice that Proposition C.10 gives, on the event {τN ≥ n − 1},∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2

E
[
G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
[2]
n
n−1, `

[2]
n−1)F (X

`
[2]
n
n )

���� WN
n−1

]
E

[
G̃†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)F (X

`
′[2]
n
n )

���� WN
n−1

]
=

(
Q̃†,bn−1
n̂ (F )

) ⊗2
(X

`
[2]
n−1
n−1 ,X

`
′[2]
n−1
n−1 ).

Hence, one has
R3(N ) = Γ̃†,bn−1,N Q̃

†,bn−1
n̂ (F )

2
1τN ≥n−1, a.s .

which guarantees that

E [R3(N )] = E
[
Γ̃†,bn−1,N Q̃

†,bn−1
n̂ (F )

2
1τN ≥n−1

]
.

Therefore, it su�ces to verify that

E [R1(N )] = O

(
1
N

)
and E [R2(N )] = O

(
1
N

)
. (95)
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Without loss of generality, we suppose that F ≡ 1. The rest of the proof is done by
induction. For n = 0, by de�nition, we have

R1(N ) = R2(N ) =
4N − 6

N (N − 1) = O

(
1
N

)
.

For n ≥ 1, we suppose that

E


∑

(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2\(N )4

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1

 = O

(
1
N

)
.

As is stated many times, we may omit the notation 1τN ≥n−1 since it is WN
n−1-measurable.

Once again, let us return to the decomposition (63). Since the essential idea is highly repet-
itive w.r.t. the reasoning in the proof of Proposition C.10, we skip some of the unnecessary
details in the rest of the proof.

(i) Case: (`[2]n , `
′[2]
n ) ∈

(
(N )2

)×2
∩ [N ]42:

By the same procedure given in the proof of Proposition C.8 and Lemma C.10, we
obtain

E


∑

(`
[2]
n ,`

′[2]
n )∈((N )2)×2∩[N ]42

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃

†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)

λ(�)n−1(A
`
[2]
n
n−1, `

[2]
n−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)F

⊗2(X
`
[2]
n
n ,X

`
′[2]
n
n )

���� WN
n−1

]
1τN ≥n−1

≤C11{#{`1
n−1,`

2
n−1,`

′1
n−1,`

′2
n−1<4}},

and ∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2∩[N ]42

E
[
G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
[2]
n
n−1, `

[2]
n−1)

���� WN
n−1

]
E

[
G̃†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)

���� WN
n−1

]
1τN ≥n−1

≤C ′11{#{`1
n−1,`

2
n−1,`

′1
n−1,`

′2
n−1<4}},

where C1 and C ′1 are some constant that does not depend on N .

(ii) Case: (`[2]n , `
′[2]
n ) ∈

(
(N )2

)×2
∩ [N ]43:

This time, we get

E


∑

(`
[2]
n ,`

′[2]
n )∈((N )2)×2∩[N ]43

G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)G̃

†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)

λ(�)n−1(A
`
[2]
n
n−1, `

[2]
n−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)F

⊗2(X
`
[2]
n
n ,X

`
′[2]
n
n )

���� WN
n−1

]
1τN ≥n−1

≤C21{#{`1
n−1,`

2
n−1,`

′1
n−1,`

′2
n−1<4}},

87



and ∑
(`
[2]
n ,`

′[2]
n )∈((N )2)×2∩[N ]43

E
[
G̃†,bn−1
n−1 (`

[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
[2]
n
n−1, `

[2]
n−1)

���� WN
n−1

]
E

[
G̃†,bn−1
n−1 (`

′[2]
n−1:n,Bn−1,Xn−1)λ

(�)

n−1(A
`
′[2]
n
n−1, `

′[2]
n−1)

���� WN
n−1

]
1τN ≥n−1

≤C ′21{#{`1
n−1,`

2
n−1,`

′1
n−1,`

′2
n−1<4}},

where C2 and C ′2 are some constant that does not depend on N .
By combining the both cases, we establish that

R1(N ) ≤
∑

(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1(C1 +C

′
1)1{#{`1

n−1,`
2
n−1,`

′1
n−1,`

′2
n−1<4}}

=
∑

(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2\(N )4

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1(C1 +C

′
1), a.s .

and
R2(N ) ≤

∑
(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1(C2 +C

′
2)1{#{`1

n−1,`
2
n−1,`

′1
n−1,`

′2
n−1<4}}

=
∑

(`
[2]
n−1,`

′[2]
n−1)∈((N )

2)×2\(N )4

Λ̃†,bn−1[`
[2]
n−1]Λ̃

†,b
n−1[`

′[2]
n−1]1τN ≥n−1(C2 +C

′
2). a.s .

By taking the expectation on both sides of the inequalities above, the desired convergence
(92) are then veri�ed thanks to the induction hypothesis. The conclusion follows. �

LemmaC.12. For any test function F ∈ Bb (En)⊗2 and any coalescent indicatorb ∈ {0, 1}n+1,
we have

Γ‡,bn−1,NQ
‡,bn−1
n̂ Cbn (F ) − Γ

‡,b
n−1,NQ

‡,bn−1
n Cbn (F ) = OL1

(
1
√
N

)
,

as well as

Γ̃†,bn−1,N Q̃
†,bn−1
n̂ (F ) − Γ̃†,bn−1,N Q̃

†,bn−1
n (F ) = OL1

(
1
√
N

)
.

Proof. First, we noticed that for any test functions F1, F2 ∈ Bb (En)
⊗2, Minkowski’s in-

equality gives


Γ‡,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F1 + F2)1τN ≥n−1 − η
⊗2
n−1(F1 + F2)

��
L1





≤




Γ‡,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F1)1τN ≥n−1 − η
⊗2
n−1(F1)

��



L1

+




Γ‡,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F2)1τN ≥n−1 − η
⊗2
n−1(F2)

��



L1
.

(96)

Second, thanks to Cauchy-Schwartz inequality, Proposition C.5 and Proposition C.7, we
deduce that 


Γ‡,bn−1,N (1)1τN ≥n−1

��(ηNn−1)
�2(F1)1τN ≥n−1 − η

⊗2
n−1(F1)

��



L1

≤




Γ‡,bn−1,N (1)1τN ≥n−1





L2



(ηNn−1)
�2(F1)1τN ≥n−1 − η

⊗2
n−1(F1)




L2

=O

(
1
√
N

)
.

(97)
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Similarly, thanks to Proposition C.8, we also have


Γ̃†,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F1 + F2)1τN ≥n−1 − η
⊗2
n−1(F1 + F2)

��



L1

≤




Γ̃†,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F1)1τN ≥n−1 − η
⊗2
n−1(F1)

��



L1

+




Γ̃†,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F2)1τN ≥n−1 − η
⊗2
n−1(F2)

��



L1
.

(98)

and 


Γ̃†,bn−1,N (1)1τN ≥n−1
��(ηNn−1)

�2(F1)1τN ≥n−1 − η
⊗2
n−1(F1)

��



L1

≤




Γ̃†,bn−1,N (1)1τN ≥n−1





L2



(ηNn−1)
�2(F1)1τN ≥n−1 − η

⊗2
n−1(F1)




L2

=O

(
1
√
N

)
.

(99)

Finally, let us go back to two pairs of decompositions (76), (86) and (89), (91), the boundness
of Gn−1 and the homogeneous structure in these two decompositions allow us to apply
respectively (96), (97) and (98), (99). Note that

m(Xn−1)(Gn−1) =m
�2(Xn−1)(1 ⊗ Gn−1),

and
m(Xn−1)(G

2
n−1) =m

�2(Xn−1)(1 ⊗ G2
n−1).

The desired L1-bound can therefore be obtained with some standard algebraic manipula-
tions.

�

D Partial R-algebra structure for transition oper-
ators
In the development of SMC framework, the Feynman-Kac semigroup plays a crucial role
in the theoretic analysis: it provides the natural martingale or bias-martingale structure
constructed by focusing on the local sampling errors at each level and/or by each parti-
cle. In the present work, it is also at the core of the proofs of technical results. However,
in asymmetric SMC framework, we need to consider a new type of structure, such as
the decompositions (24), (25) and (29). Alghough the coalescent Feynman-Kac measures
and coalescent tree occupation measures is very di�erent in terms of construction, they
share the same algebraic structure. In the classic literature in the domain, the R-algebra
structure is regarded trivial: it is extremely easy to verify and no meaningful calculations
are conducted according to this structure. However, in the variance related problem of
asymmetric SMC framework, it is crucial to the construction of the variance estimators.
Therefore, we think it is important to summary and justify this particular calculations,
which is novel to the general framework in the SMC context. We start by the case where
all the particles share a same state space, in order to illustrate the intuition of our con-
struction.
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D.1 R-algebra structure on homogeneous state spaces
Let us assume that E = E0 = E1 = · · · = En . First, we notice that (Bb (E),+,×) admits a
ring structure, where “+” and “×” use the usual convention, that is,

∀f ,д ∈ Bb (E), f + д : E 3 x 7→ f (x) + д(x) ∈ R,

and
∀f ,д ∈ Bb (E), f × д : E 3 x 7→ f (x) × д(x) ∈ R.

Given a sequence of transition kernel (Mn,n ≥ 1), we consider the uniform �nite transi-
tion kernels at step n ≥ 1 de�ned by

Qn := {дn−1(x)Mn(x,dy) | дn−1 ∈ Bb (E)} .

It is readily checked that Qn can be regarded a ring with (+, ·). More precisely, the plus
“+” is de�ned by

∀µ ∈ M(E), ∀f ∈ Bb (E), µ(Q1 +Q2)(f ) := µQ1(f ) + µQ2(f ).

Fixing a time horizon T ∈ N∗, we denote Q the ring generated by ∪Tn=0Qn . Then, (Q,+, ·)
allows a ring structure. Let us consider the ring R := Bb (E), it is then natural to construct
an R-algebra (cf. Figure 3).

time: semigroup (Q, ·)

particle block: R-module (R,+,×) × (Qn,+)

R-algebra: (R,+,×) × (Q,+, ·)

Figure 3: R-algebra structure of Feynman-Kac kernels

In this article, the �rst family of decompositions (24) and (25) is obtained by taking
R := Bb (E)⊗2. We consider the R-algebra structure on Q(2), de�ned by the ring generated
by ∪Tn=0Q

(2)
n , with

Q
(2)
n := Q⊗2

n ∪C1Q
⊗2
n ,

where
C1Q

⊗2
n :=

{
C1Qn

�� Qn ∈ Q
⊗2
n

}
.

The similar argument can also be used to de�ne, P-almost surely, the R-algebra for the
random matrix with which we de�ne the coalescent tree occupation measures for each
1 < N < +∞. The similar decomposition (29), which is valid P-almost surely, can thus be
regarded as the direct consequence of the R-algebra homomorphism.
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D.2 Partial R-algebra structure
More generally, since the state spaces may vary w.r.t. time horizon n, the semigroup struc-
ture is then not intrinsic: one should consider the partial semigroup, in which the associ-
ated composition law is associative when it is compatible. Moreover, using the same idea,
one may de�ne the partial R-algebra, which, roughly speaking, is an algebraic structure
such that all the operations in an R-algebra is valid when it is compatible.
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