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Hidden Markov Models

-0 -1 -2 -=

.0 .1 .2 .=

Signal

Observation

• (-=)=≥0: the underlying Markov chain that is not directly observable;
• (.=)=≥0: the conditionally independent observations, i.e.,

P (.= ∈ � | -0 = G0, -1 = G1, . . . , -= = G=) = P (.= ∈ � | -= = G=)

Goal: Conduct inference on the posterior distributions de�ned as follows:

�= (5 ) = E [5 (-=) | .0, · · · , .=−1]

For example, one may consider the setting{
-= = 6(-=−1) +,=

.= = ℎ(-=) ++=
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Hidden Markov Models: Particle Filters
Bootstrap Filter [Gordon, 1993]:
• Generate an # -particle system;
• Evolve the particle system with selection and mutation mechanisms.

At each iteration 9 ≥ 0:
• Selection: Multinomial resampling according to ?

(
.9

�� G 9 ) ;
• Mutation: Transition according to the Markov kernel ?

(
G 9+1

�� G 9 ) .
Estimation: use the empirical measure at level = to approximate posterior distribution.

Key idea: Bayes formula + conditional independence yield

�= (5 ) =
∫
5 (G=)

∏=−1
9=0 ?

(
.9

�� G 9 ) ? (G0)∏=−1
9=0 ?

(
G 9+1

�� G 9 ) 3G03G1 . . . 3G=∫ =−1∏
9=0

? (.9 | G 9 )︸           ︷︷           ︸
Weights (selection)

? (G0)
=−1∏
9=0

? (G 9+1 | G 9 )3G03G1 . . . 3G=︸                                         ︷︷                                         ︸
Joint distribution of Markov chain (mutation)
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Rare-event simulation: Subset Simulation

�=−1

�=−2

�=−3

�0

�= = �∗: rare event of interest.

Goal: Estimate the rare-event probability ?∗ := P (- ∈ �∗).
Key idea: Construct a sequence of decreasing sets (� 9 )0≤ 9≤= , such that

� = �−1 ⊃ �0 ⊃ �1 ⊃ �2 ⊃ · · · ⊃ �=−1 ⊃ �= = �∗

Bayes formula gives P (- ∈ �∗) =
∏=

9=0 P
(
- ∈ � 9

�� - ∈ � 9−1)
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Rare-event simulation: Subset Simulation
Subset simulation [Au and Beck, 2001]:
• Construct P

(
·
�� - ∈ � 9 )-invariant kernels (shaker in � 9 );

• Evolve the particle system with selection-mutation mechanism.
At iteration 9 ≥ 0:
• Select the surviving particles that succeed in moving to the smaller set � 9 ;
• Uniformly resample # replicas from the surviving ones;
• Mutate all the # particles according to the shaker in � 9 .

Estimation: product of the rates of surviving particles at each step.

P (- ∈ �∗)︸       ︷︷       ︸
Rare-event probability

=

=∏
9=0

P
(
- ∈ � 9

�� - ∈ � 9−1)︸                      ︷︷                      ︸
Non-rare-event probability

Each term of the “non-rare-event probability” can therefore be estimated separately.
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General framework: Feynman-Kac particle models
Mathematical formalization for a wide range of genetic particle methods.
Main reference: the pair of books [Del Moral, 2004, Del Moral, 2013].
Ingredients:
• A sequence of non-negative potential functions (�=)=≥0;
• A sequence of Markov kernels ("=)=≥1 and an initial distribution [0.

Key constructions:
• Feynman-Kac operator (semigroup) &= (G, 3~) := �=−1(G)"= (G, 3~);
• Feynman-Kac measures �ows ([=)=≥0 and (W=)=≥0 de�ned by

W= = W=−1&= and [= = [=−1&=/[=−1(�=−1)

Relation between [= and W= :

W= =

{
=−1∏
?=0

[? (�?)
}
[= and [= = W=/ W= (1)︸︷︷︸

mass of W=

With proper choices of �= and "= :
• In Bootstrap Filter, the posterior distribution �= (5 ) is [= (5 );
• In Subset Simulation, the rare-event probability ?∗ is W= (1).



8/54

Interacting Particle System (IPS)
McKean interpretation in Feynman-Kac particle models:
• Construct McKean kernels that connect the probability measures ([=)=≥0:

[=−1 =,[=−1 = [=

• Simulate an IPS to approximate the constructed McKean chain, and estimate [= and
W= with the associated empirical measures [#= , i.e.,

[#= :=
1
#

#∑
8=1

X- 8= and W#= :=

{
=−1∏
?=0

[#? (�?)
}
[#=

• Mechanism of IPS (replacing [?−1 by [#?−1):
1 X0 = (- 1

0 , -
2
0 , . . . , -

#
0 ) ∼ [⊗#0 ;

2 ∀? ≥ 1, Xp = (- 1
? , -

2
? , . . . , -

#
? ) ∼

⊗#

8=1  ?,[#?−1
(- 8?−1, ·).

Multinomial resampling scheme:

 =,[ (G, 3~) :=
[&= (3~)
[ (�=−1)

, with &= (G, 3~) = �=−1(G)"= (G, 3~) .
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Interacting Particle System (IPS)
Genealogy of IPS:
In practice, the approximated McKean kernel

 =,[#
=−1
(G, 3~) =

#∑
:=1

�=−1(-:=−1)∑#
ℓ=1�=−1(- ℓ=−1)

"= (-:=−1, 3~)

can be decomposed into two steps:
• Selection:

∀1 ≤ 8 ≤ #, �8=−1 ∼
#∑
:=1

�=−1(-:=−1)∑#
ℓ=1�=−1(- ℓ=−1)

X:

• Mutation:
∀1 ≤ 8 ≤ #, - 8= ∼ "= (-

�8
=−1

=−1 , ·)

This mechanism applies to each particle at each iteration. We call the indices of the
parent (�8=)=≥0,1≤8≤# the genealogy of the IPS.
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Some convergence results (# →∞)
From now on, we only discuss the behavior of W#= . Suppose that (�=)=≥0 are uniformly
bounded:
• Central Limit Theorem:

√
# (W#= (5 ) − W= (5 ))

d−−−−−→
#→∞

N
(
0, f2W= (5 )

)
with

f2W= (5 ) :=
=∑
?=0

{
W? (1)W? (&?,= (5 )2) − W= (5 )2

}
where &?,= := &?+1&?+2 · · ·&= .
• Consistent variance estimator [Chan and Lai, 2013, Lee and Whiteley, 2018]:

#W#= (1)2+ #= (5 )
P−−−−−→

#→∞
f2W= (5 )

with, if �8= denotes the index of the ancestor of the particle - 8= at step 0,

+ #= (5 ) := [#= (5 )2 −
#=−1

(# − 1)=+1
∑
�8=≠�

9
=

5 (- 8=) 5 (-
9
=)
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Adaptive SMC via summary statistics [Beskos et al., 2016]
The potential functions �=,I and Markov kernels "=,I are indexed by a parameter I ∈ R3 .

Optimal Feynman-Kac particle model:
Let I∗= = [= (Z=) be the optimal parameter for the considered application (e.g. the smallest
asymptotic variance). However, I∗= is unknown.

Idea: Use the information encoded in the history of the samples, through the design of
an adaptive algorithm by setting Î∗= = [#= (Z=).

McKean kernel:

 =,[ (G, 3~) :=
[&=,[ (Z=−1) (3~)
[ (�=−1,[ (Z=−1) )

,

with the adaptive Feynman-Kac operator de�ned by

&=,[ (Z=−1) (G, 3~) = �=−1,[ (Z=−1) (G)"=,[ (Z=−1) (G, 3~) .
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Adaptive SMC via summary statistics
Main Assumption:
For any test function 5 , there exists a function ℎ= : �= × R3 → R3 such that

∀(G, I) ∈ �= × R3 , &=+1,I (5 ) (G) −&=+1,I∗= (5 ) (G) =
〈
ℎ= (G, I), I − I∗=

〉
The function ℎ= is assumed to satisfy some regularity properties such as boundedness
and smoothness, and a speci�c “stability” property, that writes

[=
(
ℎ= (·, I∗=)

)
= 0

By denoting &= = &=,I∗
=−1

, we have the following asymptotic result:
CLT [Beskos et al., 2016]: Under the Assumption above (and some other regularity
assumptions), we have

√
#

(
W#= (5 ) − W= (5 )

) d−−−−−→
#→∞

N
(
0, f2W= (5 )

)
The asymptotic variance is identical to the one of the optimal reference model.
Question: Is the variance estimator of L&W still consistent in this adaptive setting?
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Answer: YES!
However, the theoretical tools in [Lee and Whiteley, 2018] are not easy to use in the
adaptive setting to prove the consistency, so a new language is required to conduct the
analysis.
Key idea: Separate adaptiveness and genealogy by Doob’s decomposition.
Asymptotic variance [Cérou et al., 2011]:

f2W= (5 ) =
=∑
?=0

(
Γ
(?)
= (5 ⊗2) − Γ (∅)= (5 ⊗2)

)
.

. . . . . .

. . . . . .

&1 &?−1 &? &?+1 &?+2 &?+3 &=

&1 &?−1 &?

&?+1

&?+2 &?+3 &=

[0

[0

Figure: A representation of the coalescent tree-based measure Γ
(?)
= := W? (1)W? (&?,= (5 )2).

Term by term estimators:

f2W=,# (5 ) :=
=∑
?=0

(
Γ
(?)
=,#
(5 ⊗2) − Γ (∅)

=,#
(5 ⊗2)

)
P−−−−−→

#→∞
f2W= (5 ).
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Key construction: Coalescent tree occupation measures
1 = (10, 11, . . . , 1=) ∈ {0, 1}=+1: coalescence indicator.
1? = 1 indicates coalescence at step ? .
If there exists only one coalescence at level ? , we denote 1 = (?) (resp. (∅) if none).

Γ1=,# (� ) := W
#
= (1)2

#=−1

(# − 1)=+1
∑

ℓ
[2]
0:= ∈( (# )2)

×(=+1)

{
=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )

}
�1= (� ) (-

ℓ
[2]
=
= ),

where _1? (0̃
[2]
? , ℓ

[2]
? ) ∈ {0, 1} is an indicator function de�ned by

_1? (0̃
[2]
? , ℓ

[2]
? ) := 1{1?=0}1{0̃1?=ℓ1?≠0̃2?=ℓ2? } + 1{1?=1}1{0̃1?=ℓ1?=0̃2?≠ℓ2? } .

- 1
0

- 2
0

- 3
0

- 4
0

- 5
0

step 0

- 1
1

- 2
1

- 3
1

- 4
1

- 5
1

step 1

- 1
2

- 2
2

- 3
2

- 4
2
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2

step 2

- 1
3

- 2
3

- 3
3

- 4
3

- 5
3

step 3

- 1
4

- 2
4

- 3
4

- 4
4

- 5
4

step 4

- 1
5

- 2
5

- 3
5

- 4
5

- 5
5

step 5

- 1
6

- 2
6

- 3
6

- 4
6

- 5
6

step 6

Figure: An IPS (with genealogy) of = + 1 = 7 levels and # = 5 particles at each level.
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Estimate Γ (3)6 (� ) by Γ (3)6,5 (� )

step 0 step 1 step 2 step 3 step 4 step 5 step 6

It turns out that there are 4 possible choices, taking into account that � (G, G ′) is not
necessarily symmetric in its variables. Namely, the �rst couple of ancestral lines is:
• ℓ [2]0:6 = ((5, 3), (4, 3), (2, 5), (2, 4), (2, 5), (1, 3), (2, 4)) ,
• ℓ [2]0:6 = ((5, 3), (4, 3), (2, 5), (2, 4), (5, 2), (3, 1), (4, 2)) .
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Estimate Γ (3)6 (� ) by Γ (3)6,5 (� )

step 0 step 1 step 2 step 3 step 4 step 5 step 6

The second couple of ancestral lines is:
• ℓ [2]0:6 = ((5, 3), (4, 3), (2, 5), (2, 1), (2, 5), (1, 3), (2, 4)) ,
• ℓ [2]0:6 = ((5, 3), (4, 3), (2, 5), (2, 1), (5, 2), (3, 1), (4, 2)) .

Hence, the number of choices of ℓ [2]0:6 where ℓ [2]6 = (2, 4) is 2, and the number of choices
of ℓ [2]0:6 where ℓ [2]6 = (4, 2) is also 2.

Γ (3)6,5 (� ) = W
5
6 (1)2 × 2 ×

{
55

47
(
� (- 2

6 , -
4
6 ) + � (- 4

6 , -
2
6 )

)}
.
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Strategy of proof
Step 1: Prove the consistency of coalescent tree occupation measures:

Γ1=,# (� )
P−−−−−→

#→∞
Γ1= (� ),

which proves the consistency of the term by term estimator f2W=,# (5 ).
Step 2: Using some combinatorial structure of IPS, prove that the variance estimator of
L&W is “close” to our term by term estimator:

#W#= (1)2+ #= (5 ) − f2W=,# (5 )
P−−−−−→

#→∞
0.

Theorem
Under proper assumptions, the estimator of L&W is consistent in the Adaptive SMC
framework:

#W#= (1)2+ #= (5 )
P−−−−−→

#→∞
f2W= (5 ).



19/54

Remarks on our assumptions:
• Our assumptions to have CLT + consistent asymptotic variance estimation are

slightly weaker than the ones proposed in [Beskos et al., 2016], which already cover
a wide range of real-world applications.
• Our assumptions do not cover the model such as static AMS algorithm proposed in

[Cérou and Guyader, 2016]. However, we believe that with a relaxation on the
regularity of ℎ= , we could still prove the consistency of the estimator of L&W.
• The general strategy to separate the adaptiveness and genealogy analysis should

also apply to models with di�erent resampling schemes.

Di�erent resampling schemes? Which? Why?
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Alternative McKean interpretation
Subset Simulation as Feynman-Kac particle model:
• �= (G): an indicator function 1�= (G);
• "= (G, 3~): an [=-invariant kernel, with [= := P (- ∈ · | - ∈ �=) .

Symmetric McKean kernel:

 
sym
=,[ (G, 3~) := �=−1(G)"= (G, 3~) + (1 −�=−1(G))

[&= (3~)
[ (�=−1)

.

Asymmetric McKean kernel:

 
asym
=,[ (G, 3~) := �=−1(G)XG (3~) + (1 −�=−1(G))

[&= (3~)
[ (�=−1)

.

It is readily checked that [=−1 
sym
=,[=−1 = [= and [=−1 

asym
=,[=−1 = [= .

Idea of asymmetric resampling: Since the surviving particles are already “well
placed”, there is no need to implement another mutation. So, the computational burden
can be dramatically reduced, since the mutation kernel "= is usually the main cost in
practice.
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Rare-event simulation in Molecular Dynamics
Overdamped Langevin dynamics:

∀C ∈ N, -C+1 − -C = −∇+ (-C )ℎ +
√
2V−1(,(C+1)ℎ −,Cℎ).

with potential function + and inverse temperature V . The process (,B)B≥0 denotes a
standard Brownian motion in R3 and ℎ > 0 is the associated time step.

Metastability:
Metastable states are typically the wells (open sets) in the potential function + . When
trapped in such zone, it is di�cult for (-C )C ∈N to escape.

Goal: Denote by � and � two metastable states. The goal is to estimate the rare-event
probability

?∗ := PG0 (g� < g�) = P (g� < g� | -0 = G0) ,

where the stopping times are de�ned respectively by

g� := inf{C ∈ N : -C ∈ �} and g� := inf{C ∈ N : -C ∈ �}.
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Rare-event simulation in Molecular Dynamics

� �

•
G0

rare event of interest

R2

Figure: Schematic picture of a 2-dimensional toy example with the level sets of + (dotted lines).

Di�culties:
• High dimension: �nite di�erence-based numerical PDE methods would not work;
• Metastability: rare-event simulation involved, and naive MC would not work.

Question: Can we implement SMC in this scenario? How?
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Generalized Adaptive Multilevel Splitting (gAMS) [Bréhier et al., 2016]
An Adaptive SMC-type algorithm that does not enter into the Adaptive SMC framework
discussed above (di�erent resampling scheme; “stability” not veri�ed).

Ingredient:
A reaction coordinate b : R3 ↦→ R, that measures the advance of a reaction trajectory
towards metastable state �.

Level of trajectory:
For a trajectory x = (GC )C ≥0, the level associated to the reaction coordinate b is the
maximum value of b on x , i.e.,

sup
C<g�∧g�

{b (GC )}.

Idea of gAMS:
• Generate an # -particle system in the path space;
• Implement an adaptive level generating mechanism;
• Evolve the IPS with asymmetric resampling scheme.
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gAMS
with continous reaction coordinate
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� �

•

•!
∗

R

R2

b (G,~) = G

• • •

!10
!̂0

!20 !30

IPS on the path space:
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� �
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� �

•
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∗

R

R2

b (G,~) = G

•

!̂1 !32

IPS on the path space:

•
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•

• •

•
!22

· · ·

!̂2
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gAMS
with discrete reaction coordinate
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� �

•

• • • • • • •
R

R2

b (G,~) = max
1≤8≤7

{ℓ8 : ℓ8 < G}

•
•
•

IPS on the state space (Symmetric SMC):

ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6 ℓ7 = !
∗

•
•
•

•
•
•
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� �
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Summary of gAMS
• When the reaction coordinate is continuous, gAMS is an Adaptive SMC with

asymmetric resampling scheme;
• When the reaction coordinate is discrete, gAMS enters into Symmetric SMC

framework with �xed levels;
• In both cases mentioned above, the rare-event probability can be expressed as W= (5 ).
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Main results

Theorem (CLT)
Assume that (�=)=≥0 is [0, 1]-valued. We have

√
#

(
W#= (5 ) − W= (5 )

) d−−−−−→
#→∞

N
(
0, f̃2W= (5 )

)
,

with f̃2W= (5 ) :=
∑=
?=0

(
Γ
†,(?)
= (5 ⊗2) − Γ†,(∅)= (5 ⊗2)

)
+∑=−1

?=0 Γ̃
†,(?)
= (5 ⊗2) .

Theorem (Variance estimation)

• We propose an unbiased nonasymptotic variance estimator for Var[W#= (5 )] in
Symmetric SMC, of time complexity O(=# 2);
• We also propose a biased consistent asymptotic variance estimator for f̃2W= (5 ) in
Asymmetric SMC, of time complexity O(=# ).

The analysis is done by developing a language called generalized coalescent tree-based
expansion, which is notationally very heavy. It is then not covered in this presentation.
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Committor function
The committor function is de�ned by b∗(G) = PG (g� < g�) .

Why do we estimate the committor function?
• Optimal choice of reaction coordinate for gAMS in terms of asymptotic variance

(see, e.g., [Cérou et al., 2019]);
• Ingredient for other methods (e.g. Importance Sampling [Lelièvre and Stoltz, 2016]).

PDE point of view:
Denote by �, � two metastable states. The committor function b∗ is the solution of the
following elliptic PDE:

−∇+ · ∇D + V−1ΔD = 0 on R3\(� ∪ �),

with the boundary conditions {
D = 0 on m�;
D = 1 on m�.

This allows to calculate the committor function with �nite di�erence method in low
dimension, which provides a reference for our toy example.
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A 2-dimensional toy example
Three-hole potential:

+ (G,~) :=3 exp
(
−G2 − (~ − 1/3)2

)
− 3 exp

(
−G2 − (~ − 5/3)2

)
− 5 exp

(
−(G − 1)2 − ~2

)
− 5 exp

(
−(G + 1)2 − ~2

)
+ G4/5 + (~ − 1/3)2/5.

(a) Energy landscape of three-hole potential. (b) Committor function approximated by �nite di�erence method with V = 1.67.
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Iterative update strategy with Mondrian Forests
Mondrian Forests (MF, [Lakshminarayanan et al., 2014]) are a nonparametric regressor
that allows online learning. More concretely, MF is a variant of Random Forests whose
splits do not depend on the response variables .8 .

Supervised learning: Given a dataset {(-8 , .8) : 1 ≤ 8 ≤  }, the goal is to estimate
E [. | - = G]. In our situation, the training data is the couple

(G0: Starting point of gAMS algorithm, b̂∗(G0): Estimated probability),

and the conditional expectation is the committor function b∗(G) = P (g� < g� | -0 = G).

gAMS MF

serving as reaction coordinate

generating training data

Figure: The illustration of iterative updating strategy.



42/54

Why Mondrian Forests?
Characteristics of our problem:
• Estimation should be extremely fast;
• We can control the quality of our training data (with variance estimation);
• We can control the distribution of -8 (active learning).

Advantages of MF:
• Nearly no tuning needed;
• Online learning is available, and the performance does not depend on the order of

arrival of data;
• Fast in terms of estimation (average of binary decision trees);
• Prediction is a weighted average of the training data (the image is of �nite values,

hence theoretical consistency and variance estimation are available).

Other regressors? If the goal is only to estimate the committor function (rather than to
improve gAMS at the same time), then almost all the SOTA machine/statistical learning
methods can be considered. This is however beyond the scope of this thesis.
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Mondrian Forests (lifetime _ = ∞)

�

� �

�

•

•
•

•

-1

-2

-3
-4

I (1,1)

C = 0

G > I (1,1)�1

-1, -3 -2, -4

Figure: The �rst cut of a Mondrian tree along with lifetime.



44/54

Mondrian Forests (lifetime _ = ∞)

•

•
•

•

-1

-2

-3
-4

I (1,1)

C = 0

G > I (1,1)�1
�;

�; �;

�;

�A

�A �A

�A

I (2,1)

I (2,2)

~ ≥ I (2,1)

G ≥ I (2,2)

�1 + �12

�1 + �22

-1 -3

-4 -2

C1

C2

C3

C4

Figure: The second and third cuts of a Mondrian tree along with lifetime.
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Prediction of a MF that contains two Mondrian trees

•

•
•

•

-1

-2

-3
-4

C1

C3

C2

C4

G

(a) First Mondrian tree.

•

•
•

•

-1

-2

-3
-4G

C′1

C′3

C′2

C′4

(b) Second Mondrian tree.

Final prediction at the point G is the average of the prediction made by the Mondrian
trees in the forest, i.e.,

1
2
.2 +

1
2
.3

Online learning: Memoryless property of exponential random vriables.
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Figure: Learning with the training data generated by gAMS algorithm. The reaction coordinate is
set to be the distance to the state �. All the sample points are uniformly drawn in the domain.
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Figure: Learning with the data re-generated by gAMS algorithm. The reaction coordinate is the
trained MF model. All the sample points are uniformly drawn in the domain.
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Possible improvements
Tempering:

Figure: Illustrations of committor functions for di�erent temperatures.
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Possible improvements
Tempering (potential barrier):
• In high temperature setting, committor function can be estimated e�ciently with

naive Monte Carlo +MF;
• Use the MF model estimated with Vlow (high temperature) to implement gAMS

algorithm in the setting of Vhigh (low temperature);
• No pre-de�ned reaction coordinate needed.

Active learning (still open problems):
• In high dimensional setting, it becomes more di�cult to use uniformly sampled -8

to estimate the committor function (curse of dimension);
• We only need to estimate part of the committor function, namely the “most visited

zone” for the reaction trajectories, in order to improve the gAMS algorithm for a
certain problem.
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Conclusion
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Contributions and Perspectives
Results:
• Provide uncertainty control for a wide range of Adaptive SMC models;
• Provide uncertainty control for gAMS in a speci�c setting;
• Combine the gAMS algorithm with modern statistical/machine learning.

Theoretical tools:
• Provide new strategy to deal with Adaptive Feynman-Kac particle models;
• Develop the language of generalized coalescent tree-based measures;
• Enrich the general theory of Feynman-Kac particle models.

Future research:
• Continuous-time Asymmetric SMC;
• Coalescent tree-based expansion in general IPS context (e.g. PMCMC);
• Develop an e�cient, automated strategy, to estimate the committor function in a

high dimensional and low temperature setting.
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Thank you for your attention!
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