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Sequential Monte Carlo (SMC) methods represent a classical set of tech-
niques to simulate a sequence of probability measures through a simple se-
lection/mutation mechanism. However, the associated selection functions and
mutation kernels usually depend on tuning parameters that are of first impor-
tance for the efficiency of the algorithm. A standard way to address this prob-
lem is to apply Adaptive Sequential Monte Carlo (ASMC) methods, which
consist in exploiting the information given by the history of the sample to
tune the parameters. This article is concerned with variance estimation in
such ASMC methods. Specifically, we focus on the case where the asymptotic
variance coincides with the one of the “limiting” Sequential Monte Carlo al-
gorithm as defined by Beskos et al. [4]. We prove that, under natural assump-
tions, the estimator introduced by Lee and Whiteley [16] in the nonadaptive
case (i.e., SMC) is also a consistent estimator of the asymptotic variance for
ASMC methods. To do this, we introduce a new estimator that is expressed in
terms of coalescent tree-based measures, and explain its connection with the
previous one. Our estimator is constructed by tracing the genealogy of the
associated Interacting Particle System. The tools we use connect the study
of Particle Markov Chain Monte Carlo methods and the variance estimation
problem in SMC methods. As such, they may give some new insights when
dealing with complex genealogy-involved problems of Interacting Particle
Systems in more general scenarios.

1. Introduction. Sequential Monte Carlo (SMC) methods are classical Monte Carlo
techniques widely used in Bayesian inference, filtering, rare events simulations and many
other fields (see for example [15] and references therein). The principle is to approximate a
sequence of probability measures ([=)=≥0 by simulating an Interacting Particle System (IPS)
via an importance sampling and resampling mechanism. The flow of measures is then ap-
proximated by the empirical version ([#= )=≥0. A lot of convergence results when the sample
size # goes to infinity can be found in the literature (see for example [11, 12]).

In practice, when applying these SMC methods, it is also very important to have a control
on the constructed estimators, such as confidence intervals. For this, if one has a CLT type
theorem for the test function 5 such as (see, e.g., [11, 10, 14])

√
#

(
[#= (5 ) − [= (5 )

) d−−−−−→
#→∞

N(0, f= (5 )2),

it suffices to provide a consistent estimator f#= (5 ) of f= (5 ) since Slutsky’s lemma then en-
sures that √

#
(
[#= (5 ) − [= (5 )

)
f#= (5 )

d−−−−−→
#→∞

N(0,1) .

A natural way to achieve this aim is by resimulating the IPS independently many times and
by estimating f= (5 )2 with the crude variance estimator. However, since a single run of the
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algorithm may take a lot of time, this is usually intractable. In addition, as the estimator [#= (5 )
of [= (5 ) provided by SMC is typically biased, it is also nontrivial to implement parallel
computing for a large number of IPS with # relatively small. As a consequence, a variance
estimator available with a single run of the simulation is of crucial interest for applications.

The first consistent estimator of this type was proposed by Chan and Lai [9], by using
the ancestral information encoded in the genealogy of the associated IPS. Then, Lee and
Whiteley [16] proposed an unbiased variance estimator for the unnormalized measures W#=
and a term by term estimator, with insights on the genealogy of the IPS. Both estimators are
studied in the classical SMC framework, meaning in a nonadaptive setting where the weight
functions and the Markov proposal kernels are fixed a priori.

In this article, we deal with adaptive SMC methods. At each resampling step, the weight
functions and/or Markov proposal kernels depend upon the history of the simulated process.
The idea is to approximate an ideal “limiting” SMC algorithm, which is usually out of reach,
by exploiting the induced information tracked by some summary statistics. Such approaches
are expected to be more efficient and more automated than the nonadaptive ones since they
require less user-specified tuning parameters.

Specifically, we are interested in the case where the adaptive SMC algorithm is asymp-
totically identical to a “limiting” SMC algorithm. More precisely, we expect the asymptotic
variance of the adaptive SMC algorithm to be identical to the “ideal” nonadaptive one. This
kind of stability property is at the core of the pair of articles [4] and [8]. The framework
discussed in the present paper is just a slightly generalized version of the one presented in
Section 2 in [4] but still ensures the stability property of their Theorem 2.3.

Another remark is about Adaptive Multilevel Splitting (AMS), also known as Subset Sim-
ulation, see for example [2, 3, 7, 5, 8]. This is a class of ASMC algorithms dedicated to
rare event estimation and simulation. Despite the fact that our assumptions are not verified
in the AMS framework, we expect that the variance estimator would also work in this con-
text. Nonetheless, we believe that this case requires a specific analysis as well as different
assumptions. To account for this, one can notice that the proofs in [8] and [4] differ in many
points, although the take-home message is the same. In a nutshell, the main difficulty in the
AMS framework comes from the indicator functions in the potential functions as well as in
the transitions kernels, leading to severe regularity issues when dealing with CLT type results
and asymptotic variances.

From a theoretical viewpoint, to prove the consistency of the variance estimator proposed
in [16], we were not able to adapt their technical tools. This is due to the additional ran-
domness brought by the weight functions and Markov kernels in the adaptive case. As a
consequence, we propose to develop new techniques in order to estimate the terms Γ1= that
appear in the expansion of the variance given in [6]. The mains ideas are: first, our term by
term estimator is consistent and, second, the difference between our estimator and the one of
Lee and Whiteley goes to 0 in probability when the sample size # goes to infinity. However,
in practice, one uses the estimator proposed by Lee and Whiteley, which is computation-
ally very simple, while the one we introduce here may be seen as a handy tool to prove the
consistency of the former.

The construction of our estimators Γ1
=,#

uses the idea of many-body Feynman-Kac models,
which were designed in [13] to study propagation of chaos properties of Conditional Particle
Markov Chain Monte Carlo methods [1]. Above the specific context of the present article,
these connections may give some insights on how to deal with complex genealogy-involved
problems in more general settings.

Notation. Before proceeding, let us provide some notation that will be of constant use in
the following.
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• For any Polish space �, we denote respectively by M(�), M+(�) and P(�) the sets of
signed finite measures, nonnegative finite measures, and probability measures on � en-
dowed with Borel f-algebra B(�), while B1 (�) denotes the collection of the bounded
measurable functions from (�,B(�)) to (R,B(R)) equipped with uniform norm ‖·‖∞.

• For any ` ∈M(�) and any test function 5 ∈ B1 (�), we write

` (5 ) :=
∫
�

5 (G)` (3G) .

A finite nonnegative kernel & from (�,B(�)) to (�,B(� )) is a function

& : � × B(� ) ↦→ R+

such that, for all G ∈ �, & (G, ·) ∈ M+(� ) and, for all � ∈ B(� ), & (G,�) is a B(�)-
measurable function. We say that & is a Markov transition kernel if, moreover, for all
G ∈ �, & (G, ·) is a probability measure in P(� ). For a signed measure ` ∈M(�) and a test
function 5 ∈ B1 (� ), we denote respectively by `& ∈M(�) and& (5 ) ∈ B1 (�) the measure
and function respectively defined by

`& (�) :=
∫
�

` (3G)& (G,�) ∀� ∈ B(� ),

and

& (5 ) (G) :=
∫
�

& (G,3~) 5 (~) ∀G ∈ �.

Given two finite nonnegative kernels &1 and &2 respectively from �0 to �1 and �1 to �2,
&1&2 is the nonnegative kernel from �0 to �2 defined by

&1&2(G,�) :=
∫
�1

&1(G,3~)&2(~,�) ∀(G,�) ∈ �0 × B(�2).

• For two functions 5 ,6 ∈ B(�), their tensor product is the function

5 ⊗ 6 : �2 3 (G,~) ↦→ 5 (G)6(~) ∈ R,

and, in particular, we denote 5 ⊗2 := 5 ⊗ 5 . For two finite nonnegative kernels & and �
from (�,B(�)) to (�,B(� )), we denote

(& ⊗ � ) ((G,~), (�,�)) :=& (G,�) ×� (~, �)

for all (G,~) ∈ � × � and all (�,�) ∈ B(� ) ⊗ B(� ). Accordingly, we write & ⊗2 :=& ⊗& .
• In order to define the coalescent tree-based measures of size 2, we introduce the transition

operators �0 and �1 as

�0((G,~),3 (G ′,~ ′)) := X (G,~)3 (G ′,~ ′),

and

�1((G,~),3 (G ′,~ ′)) := X (G,G)3 (G ′,~ ′) .

In other words, for any measurable function � : � × � ↦→ R, we have

�0(� ) (G,~) =� (G,~) and �1(� ) (G,~) =� (G,G).

• For all x = (G1, . . . , G# ) ∈ �# , we define the empirical measure associated to x by

<(x) :=
1
#

#∑
8=1

XG8 ∈ P(�).
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We also denote

<⊗2(x) :=
1
# 2

∑
8, 9

X (G8 ,G 9 ) ∈ P(�2),

and

<�2(x) :=
1

# (# − 1)
∑
8≠9

X (G8 ,G 9 ) ∈ P(�2) .

A straightforward computation shows that

(1) <⊗2(x) = # − 1
#

<�2(x)�0 +
1
#
<�2(x)�1.

With a slight abuse of notation, considering [# ] := {1,2, . . . , # }, we write

<( [# ]) :=
1
#

#∑
8=1

X8 and <⊗2( [# ]) :=<( [# ]) ⊗<( [# ]) .

2. Adaptive Sequential Monte Carlo. This section presents the formal definition and
the regularity assumptions of the ASMC framework studied in this article. The motivation
is mainly from ASMC via summary statistics introduced in Section 2 of [4]. We refer the
reader to the latter for details on motivating examples such as filtering or sequential Bayesian
parameter inference.

2.1. Framework. The notations that are adopted are essentially those in the pair of
books [11, 12]. Let (�=,B(�=))=≥0 be a sequence of Polish spaces. For each level = ≥ 1,
we consider a family of potential functions �=−1,I : �=−1 ↦→ R+ and Markov kernels "=,I :
(�=−1,B(�=)) ↦→ [0,1] parametrized by I ∈ R3 . Accordingly, we define the family of non-
negative Feynman-Kac kernels &=,I by

&=,I (G,�) :=�=−1,I (G)"=,I (G,�) .
We suppose that there exists a sequence of reference parameters (I∗=)=≥0 and, for each = ≥ 1,
we denote

�=−1 :=�=−1,I∗
=−1
, "= :="=,I∗

=−1
and &= :=&=,I∗

=−1
.

Starting with a known probability measure W0 := [0 ∈ P(�0), we define the unnormalized
Feynman-Kac measures W= by

W= := W0&1 · · ·&=,
along with the normalized measures

[= :=
1

W= (1)
W= .

Assumption 1 below ensures that, for all = ≥ 0, �= is strictly positive so that

W= (1) =
=−1∏
?=0

[? (�?) > 0.

Another formulation of the connection between normalized and unnormalized measures is
thus given by

(2) W= (5=) = [= (5=)
=−1∏
?=0

[? (�?) .
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For ? < =, we define the Feynman-Kac semigroup

&?,= :=&?+1 · · ·&=,
and &=,= (G,�) := XG (�). In this context, ASMC algorithms aim at approximating the se-
quences of measures (W=)=≥0 and ([=)=≥0 by exploiting some summary statistics

Z= : �= ↦→ R3

such that, for all = ≥ 0, we have

[= (Z=) = I∗= .

2.2. ASMC algorithm. In practice, ASMC and SMC algorithms share the same selec-
tion/mutation mechanisms. However, since in most situations of interest the parameters
(I∗=)=≥0 are not analytically tractable, the potential functions (�=)=≥0 and transition kernels
("=)=≥1 are estimated on the fly through the design of an adaptive algorithm.

Let # ∈ N∗ be the number of particles (or samples). The Interacting Particle System
(IPS) associated to the ASMC algorithm is a Markov chain (Xn)=≥0 taking values in
(�#= ,B(�=)⊗# )=≥0 with genealogy (An)=≥0 tracking the indice of the parent of each parti-
cle at each level. Specifically, �8

?−1 = 9 means that the parent of the particle - 8? at layer ? is

-
9

?−1 at layer ? − 1. The estimation of the normalized measure [= is given by the empirical
measure

[#= :=
1
#

#∑
8=1

X- 8= .

At each level = ≥ 0, the estimated parameters are defined by /#= := [#= (Z=). In order to lighten
the notation, we denote

�=−1,# :=�=−1,/#
=−1
, "=,# :="=,/#

=−1
, and &=,# :=&=,/#

=−1
.

Then, considering (2), the unnormalized Feynman-Kac measures are estimated by

W#= (5=) := [#= (5=)
=−1∏
?=0

[#? (�?,# ).

In the following sections, we use the convention

[#−1 = W
#
−1 := [0.

Let us give the formal definition of the IPS associated with the ASMC algorithm:

(i) Initial distribution:
At step 0, let X0 ∼ [⊗#0 .

(ii) Transition kernels:
For all ? ≥ 0, set /#? = [#? (Z?). The transition- 8? - 8

?+1 is decomposed into two steps:
• Selection: given Xp = xp , we make an independent multinomial selection of the parent

of each particle by

(3) (?,# (xp,30
8
?) =

#∑
:=1

�?,# (G:? )∑#
9=1�?,# (G

9
?)
X: (308?) .

Thus, the genealogy of level ? to level ? + 1 is tracked by

Ap ∼
#⊗
8=1

(?,# (Xp, ·)
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• Mutation: given the parent indices Ap = ap , each particle at level ? evolves indepen-
dently according to the transition kernel "?+1,# , meaning that for 8 ∈ [# ],

- 8?+1 ∼"?+1,# (-
08?
? , ·).

Said differently, given Xp and Ap, we have

Xp+1 ∼
#⊗
8=1

"?+1,# (-
�8?
? , ·).

2.3. Assumptions. Our assumptions are introduced in a similar way as in [4], but just
slightly weaker. The reason why we can relax their assumptions is because we are only in-
terested in the specific situation where the asymptotic variance of the ASMC estimator is
identical to the “limiting” SMC algorithm which uses ideal potential functions and proposal
kernels, namely �? =�?,I∗

?−1
and "? ="?,I∗

?−1
. Considering stability properties, Section 2.7

in [4] explains why this case is particularly interesting in practice. In the following sections,
we use A as a short-hand for Assumption.

ASSUMPTION 1. For each = ≥ 0, we assume that �=,I is strictly positive and bounded
uniformly over I ∈ R3 , i.e., �=, ·∞ := sup

(G,I) ∈�=×R3
�=,I (G) < +∞.

Notice that, under A1, Equation (3) above is always well-defined for the denominator is
always strictly positive. In the case where �?,I is only assumed to be nonnegative, as in the
AMS framework, one may consider the stopping time g# defined by

g# := inf
{
? ∈ N : [#? (�?,# ) = 0

}
.

We believe that similar techniques can be applied to obtain results of the same taste as in the
present paper, but at the cost of considerable technical complications which are out of the
scope of this article. Let us mention that the strict positivity and boundedness of the potential
functions is also required in [4] (see page 1116 and Assumption 1 page 1118). In our second
assumption, “〈·, ·〉” stands for the Euclidean scalar product in R3 and | · | for the associated
norm.

ASSUMPTION 2. For any test function 5=+1 ∈ B1 (�=+1), there exists a measurable func-
tion ℎ= : (�= ×R3 ,B(�=) ⊗ B(R3 )) → (R3 ,B(R3 )) such that, for all (G,I=) ∈ �= ×R3 ,

&=+1,I= (5=+1) (G) −&=+1(5=+1) (G) =
〈
ℎ= (G,I=), I= − I∗=

〉
.

The function ℎ= is assumed to satisfy the following properties:

• The Euclidean norm |ℎ= | is bounded over �= ×R3 by ‖ℎ= ‖∞.
• The application I ↦→ ℎ= (G,I) is continuous at I∗= uniformly over G ∈ �= . More precisely,

for any n > 0, there exists X > 0, such that
��I= − I∗= �� < X implies

sup
G ∈�=

��ℎ= (G,I=) −ℎ= (G,I∗=)�� < n.
• ℎ= satisfies the equality [=

(
ℎ= (·, I∗=)

)
= 0.

Moreover, the summary statistics Z= = (Z 1
= , . . . , Z

3
= ) satisfies I∗= = [= (Z=) and is such that, for

all : ∈ [3], Z:= belongs to B1 (�=).
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A2 guarantees some regularity properties of the transition kernels &=,I with respect to the
parameter I and is just a slight generalization of the framework studied in Section 2 of [4].
Indeed, our function ℎ= coincides with the function l defined in (2.17) of [4], that is

ℎ= (G,I=) =
∫ 1

0
mI&=+1,I (5=+1) (G)

��
I=I∗=+_ (I=−I∗=)

3_.

As such, the first two conditions on ℎ= are satisfied as soon as Assumption 2 in [4] is verified.
In this respect, our third condition on ℎ= corresponds to their condition (2.19) in Theorem
2.3, which is precisely the “limiting” case mentioned above. Finally, the hypothesis that the
summary statistics are bounded is also required in their Assumption 1, while the relation
I∗= = [= (Z=) corresponds in their notation to b̄= = [=−1(b=).

We also want to mention that the second point is equivalent to

∀n > 0, ∃6= ∈ B1 (�=), ∃X > 0, B .C .��I= − I∗= �� < X =⇒ ∀G ∈ �=,
��ℎ= (G,I=) −ℎ= (G,I∗=)�� < 6= (G)n ≤ ‖6= ‖∞n.

We expect that, in this alternative formulation, the functions 6= and ℎ= can be relaxed to
some unbounded functions, belonging for example to L2([=), along with stronger conditions
on the test function 5=+1. We believe that this is one of the main differences between the
ASMC framework studied in [4] and the AMS framework studied in [8].

In general, it is not easy to verify the existence of such ℎ= . However, we have, at least, a
direction to explore in the case where &=,I (5 ) is not globally differentiable with respect to
I. We also remark that we do not study the consistency of W#= (5 ) and [#= (5 ) with weaker
assumptions, as we are only interested in the CLT type result of Theorem 2.1 below and,
more specifically, in the estimation of the asymptotic variance. Nevertheless, let us briefly
mention that to establish the consistency of W#= and [#= , one just needs

W#=−1&=,# (5=) −W
#
=−1&= (5=) = >p(1)

for any test function 5= ∈ B1 (�=). This does not require such a strong assumption as A2.
However, for CLT type results with the “stable” asymptotic variance, it is necessary that

W#=−1&=,# (5=) −W
#
=−1&= (5=) = >p

(
1
√
#

)
.

A stronger regularity assumption like A2 over the parametrization is therefore required.

2.4. Central limit theorems. As explained before, the present article only deals with the
case where the asymptotic variance is identical to the “limiting” one, which is only a special
case of the Central Limit Theorem 2.2 given in [4] under slightly weaker assumptions. This
is why, in Section 4.2, we propose a different strategy for the proof.

THEOREM 2.1. Assume A1-A2. For any test function 5 ∈ B= (�=), we have

√
#

(
W#= (5 ) −W= (5 )

) d−−−−−→
#→∞

N
(
0, f2

W=
(5 )

)
,

and
√
#

(
[#= (5 ) − [= (5 )

) d−−−−−→
#→∞

N
(
0, f2

[=
(5 − [= (5 ))

)
,

where

f2
W=
(5 ) :=

=∑
?=0

(
W? (1)W? (&?,= (5 )2) −W= (5 )2

)
and f2

[=
(5 ) := f2

W=
(5 )/W= (1)2.



8

One can notice that the CLT for [#= is just a consequence of the CLT for W#= , Slutsky’s
Lemma, and the decomposition

√
#

(
[#= (5 ) − [= (5 )

)
=

1
W#= (1)

√
#

(
W#= (5 − [= (5 )) −W= (5 − [= (5 ))

)
.

The main goal of this paper is to estimate the asymptotic variances f2
W=
(5 ) and f2

[=
(5 −

[= (5 )) by a single simulation of the particle system, exactly as is done by Lee and Whiteley
in [16] in a nonadaptive context.

3. Variance estimations. In this section, we recall the coalescent tree-based expansion
of the variance firstly introduced in [6] from which we deduce a new variance estimator.
We also recall the variance estimator proposed by Lee and Whiteley in [16] and explain the
connection between both estimators.

3.1. Coalescent tree-based variance expansion. We call 1 := (10, . . . ,1=) ∈ {0,1}=+1 a
coalescence indicator where 1? = 1 indicates that there is a coalescence at level ? .

DEFINITION 3.1. We associate with any coalescence indicator 1 ∈ {0,1}=+1 the nonneg-
ative measures Γ1= and Γ̄1= ∈M+(�2

=) defined for any � ∈ B1 (�2
=) by

Γ1= (� ) := [⊗2
0 �10&

⊗2
1 �11 · · ·& ⊗2

= �1= (� ),

and

Γ̄1= (� ) :=
1

W= (1)2
Γ1= (� ) .

When there is only one coalescence at, say, level ? , we write Γ
(?)
= (� ) and Γ̄

(?)
= (� ) instead of

Γ1= (� ) and Γ̄1= (� ) (see Figure 1). When there is no coalescence at all, that is 1 = (0, . . . ,0), we
have

Γ (∅)= (� ) = W ⊗2
= (� ) and Γ̄ (∅)= (� ) = [⊗2

= (� ) .

. . . . . .

. . . . . .

&1 &?−1 &? &?+1 &?+2 &?+3 &=

&1 &?−1 &?

&?+1

&?+2 &?+3 &=

[0

[0

FIG 1. A representation of the coalescent tree-based measure Γ
(?)
= .

It is easy to verify from the definition that

Γ
(?)
= (5 ⊗2) = W? (1) W?

(
&?,= (5 )2

)
.

As noticed in [6], the latter yields alternative representations for the asymptotic variances of
Theorem 2.1, namely

(4) f2
W=
(5 ) =

=∑
?=0

(
Γ
(?)
= (5 ⊗2) − Γ (∅)= (5 ⊗2)

)
,
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and

(5) f2
[=
(5 ) =

=∑
?=0

(
Γ̄
(?)
= (5 ⊗2) − Γ̄ (∅)= (5 ⊗2)

)
.

As a consequence, if for any coalescence indicator 1 := (10, . . . ,1=) ∈ {0,1}=+1, we can con-
struct a consistent estimator Γ̄1

=,#
of Γ̄1= , then we automatically deduce consistent estimators

for the asymptotic variances of Theorem 2.1. This is the idea behind our next definition.
In this definition, 0̃ [2]? = (0̃1

? , 0̃
2
?) and ℓ [2]? = (ℓ1

? , ℓ
2
? ) denote two couples of indices between

1 and # , while an (= + 1)-sequence of couples of indices such that ℓ1
? ≠ ℓ

2
? for all 0 ≤ ? ≤ = is

written

ℓ
[2]
0:= = (ℓ [2]0 , · · · , ℓ [2]= ) ∈

(
(# )2

)×(=+1)
.

Additionally, we use the notation - ℓ
[2]
=
= as a short-hand for (- ℓ

1
=
= ,-

ℓ2
=
= ).

DEFINITION 3.2. For any test function � ∈ B1 (�2
=) and any coalescence indicator 1, we

define the estimator Γ̄1
=,#

of the measure Γ̄1= by

Γ̄1=,# (� ) :=
#=−1

(# − 1)=+1
∑

ℓ
[2]
0:= ∈( (# )2)×(=+1)


=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )

�1= (� ) (- ℓ
[2]
=
= ),

where _1? (0̃
[2]
? , ℓ

[2]
? ) ∈ {0,1} is an indicator function defined by

_1? (0̃
[2]
? , ℓ

[2]
? ) := 1{1?=0}1{0̃1

?=ℓ
1
?≠0̃

2
?=ℓ

2
? } + 1{1?=1}1{0̃1

?=ℓ
1
?=0̃

2
?≠ℓ

2
? } .

The estimator of Γ1= is defined by

Γ1=,# (� ) = W
#
= (1)2 Γ̄1=,# (� ) .

Since ℓ1
? ≠ ℓ

2
? , we also have

_1? (0̃
[2]
? , ℓ

[2]
? ) = 1{1?=0}1{0̃1

?=ℓ
1
? ,0̃

2
?=ℓ

2
? } + 1{1?=1}1{0̃1

?=ℓ
1
?=0̃

2
? } .

Notice that, for = = 0, we get

(6) Γ̄10,# (� ) :=
1

# (# − 1)
∑

ℓ
[2]
0 ∈(# )2

�10 (� ) (-
ℓ
[2]
0

0 ) =
1

# (# − 1)
∑
8≠9

�10 (� ) (- 80,-
9

0 ).

We also adopt the convention

Γ̄1−1,# (� ) = Γ1−1,# (� ) := [⊗2
0 �10 (� ) .

3.1.1. A toy example. As the definition of the estimator Γ1
=,#

is not completely straight-
forward, we illustrate the idea on a simple example. For this, we consider the IPS of Figure
2.

Suppose we want to estimate Γ̄ (3)6 (� ) by Γ̄ (3)6,5 (� ). We denote 1∗ = (0,0,0,1,0,0,0) the cor-

responding coalescence indicator. In the associated IPS, we have to find the choices of ℓ [2]0:6
such that

(7)
5∏
?=0

_1
∗
? (�

ℓ
[2]
?+1
? , ℓ

[2]
? ) = 1.
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- 1
0

- 2
0

- 3
0

- 4
0

- 5
0

step 0

- 1
1

- 2
1

- 3
1

- 4
1

- 5
1

step 1

- 1
2

- 2
2

- 3
2

- 4
2

- 5
2

step 2

- 1
3

- 2
3

- 3
3

- 4
3

- 5
3

step 3

- 1
4

- 2
4

- 3
4

- 4
4

- 5
4

step 4

- 1
5

- 2
5

- 3
5

- 4
5

- 5
5

step 5

- 1
6

- 2
6

- 3
6

- 4
6

- 5
6

step 6

FIG 2. An IPS with = + 1 = 7 levels and # = 5 particles at each level.

step 0 step 1 step 2 step 3 step 4 step 5 step 6

FIG 3. The first family of ℓ [2]0:6 such that (7) is verified.

It turns out that there are 4 possible choices, taking into account that � (G,G ′) is not nec-
essarily symmetric in its variables. Namely, the first couple of ancestral lines is (see Figure
3):

• ℓ [2]0:6 = ((5,3), (4,3), (2,5), (2,4), (2,5), (1,3), (2,4)) ;
• ℓ [2]0:6 = ((5,3), (4,3), (2,5), (2,4), (5,2), (3,1), (4,2)) .

step 0 step 1 step 2 step 3 step 4 step 5 step 6

FIG 4. The second family of ℓ [2]0:6 such that (7) is verified.

The second couple of ancestral lines is (see Figure 4):

• ℓ [2]0:6 = ((5,3), (4,3), (2,5), (2,1), (2,5), (1,3), (2,4)) ;
• ℓ [2]0:6 = ((5,3), (4,3), (2,5), (2,1), (5,2), (3,1), (4,2)) .
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Hence, the number of choices of ℓ [2]0:6 where ℓ [2]6 = (2,4) is 2, and the number of choices of
ℓ
[2]
0:6 where ℓ [2]6 = (4,2) is also 2. As a consequence, we have

Γ̄ (3)6,5 (� ) = 2 ×
{

55

47

(
� (- 2

6 ,-
4
6 ) + � (-

4
6 ,-

2
6 )

)}
.

Our next result ensures the convergence of our estimators.

THEOREM 3.1 (Convergence of Γ1
=,#

). Assume A1-A2. For any test functions q,k ∈
B1 (�=) and for any coalescence indicator 1 ∈ {0,1}=+1, we have

Γ1=,# (q ⊗k ) − Γ
1
= (q ⊗k ) =Op

(
1
√
#

)
.

The proof is given in Section 4.3.

3.2. Term by term estimator. Considering (4), (5), and Theorem 3.1, we are now in a
position to provide term by term variance estimators for f2

W=
(5 ) and f2

[=
(5 ).

DEFINITION 3.3 (Estimators of the asymptotic variances). Given a test function 5 ∈
B1 (�=), we let

f2
W=,#
(5 ) :=

=∑
?=0

(
Γ
(?)
=,#
(5 ⊗2) − Γ (∅)

=,#
(5 ⊗2)

)
,

and

f2
[=,#
(5 ) :=

=∑
?=0

(
Γ̄
(?)
=,#
(5 ⊗2) − Γ̄ (∅)

=,#
(5 ⊗2)

)
.

Theorem 3.1 ensures the consistency of both Γ
(?)
=,#
(5 ⊗2) and Γ (∅)

=,#
(5 ⊗2). Returning to (4),

this amounts to saying that

f2
W=,#
(5 ) =

=∑
?=0

(
Γ
(?)
=,#
(5 ⊗2) − Γ (∅)

=,#
(5 ⊗2)

) P−−−−−→
#→∞

=∑
?=0

(
Γ
(?)
= (5 ⊗2) − Γ (∅)= (5 ⊗2)

)
= f2

W=
(5 ) .

Similarly, for the consistency of f2
[=,#
(5 − [#= (5 )), since by (5) we know that

f2
[=
(5 ) =

=∑
?=0

(
Γ̄
(?)
= (5 ⊗2) − Γ̄ (∅)= (5 ⊗2)

)
,

it suffices to verify that, for any coalescent indicator 1,

(8) Γ̄1=,#

( [
5 − [#= (5 )

] ⊗2
) P−−−−−→
#→∞

Γ̄1=

( [
5 − [#= (5 )

] ⊗2
)
.

Clearly, the linearity of Γ̄1
=,#

yields

Γ̄1=,#

( [
5 − [#= (5 )

] ⊗2
)

= Γ̄1=,# (5
⊗2) − [#= (5 )

(
Γ̄1=,# (1 ⊗ 5 ) + Γ̄

1
=,# (5 ⊗ 1)

)
+ [#= (5 )2Γ̄1=,#

(
1⊗2

)
.
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Mutatis mutandis, the same relation holds for Γ̄1=

( [
5 − [#= (5 )

] ⊗2
)
. Since a by-product of

Theorem 2.1 is that

[#= (5 ) − [= (5 ) =Op

(
1
√
#

)
,

the verification of (8) is just a consequence of Theorem 3.1 and Slutsky’s Lemma. Hence, we
have obtained the following result.

THEOREM 3.2 (Consistency of f2
W=,#

and f2
[=,#

). Assume A1-A2. For 5 ∈ B1 (�=), we
have

f2
W=,#
(5 ) − f2

W=
(5 ) =Op

(
1
√
#

)
,

as well as

f2
[=,#
(5 − [#= (5 )) − f2

[=
(5 − [= (5 )) =Op

(
1
√
#

)
.

Even if the term by term estimator is very natural in theory, the computational cost is
quite heavy in practice since one has to trace the whole genealogy of a particle system and
calculate all the corresponding terms one by one. Therefore, we do not provide an efficient
algorithm to calculate this estimator. Instead, we show in the next section that this estimator
can be connected to the one given by Lee & Whiteley in a nonadaptive context (SMC), which
is very simple and fast to calculate. Let us also mention that our term by term estimator is
different from the one introduced in Section 4.1 of [16]. The interested reader can find more
details on this point in Appendix A.3.

3.3. Disjoint ancestral lines estimator. Let us now recall the variance estimator proposed
in [16], which can be seen as a disjoint ancestral lines estimator. Namely, given a test function
5 ∈ B1 (�=), consider

(9) + #= (5 ) := [#= (5 )2 −
#=−1

(# − 1)=+1
∑
�8=≠�

9
=

5 (- 8=) 5 (-
9
=),

where �8= is the ancestor index of - 8= at level 0. Returning to the toy example of Section 3.1,
the couples (8, 9) such that 8 < 9 and �8= ≠ �

9
= are: (1,2), (1,4), (2,3), (2,5), (3,4), (4,5).

In a nonadaptive context (SMC), this is the variance estimator introduced in [16] when the
number # of particles is the same at each step. The reader is referred to [16] for an efficient
algorithm to compute this estimator.

According to our notation, since �8= ≠ �
9
= corresponds to the case 1 = (0, . . . ,0) = (∅) of

disjoint ancestral lines, we may also write

+ #= (5 ) = [#= (5 )2 − Γ̄
(∅)
=,#
(5 ⊗2) .

The following proposition makes a connection between + #= (5 ) and our estimators. Notice
that this result does not depend on A2, but is provided by the structure of the IPS and the
underlying multinomial selection scheme. The proof is housed in Section 4.5.

PROPOSITION 3.1. Assume A1. For any test function 5 ∈ B1 (�=), we have

#+ #= (5 ) − f2
[=,#
(5 ) =Op

(
1
#

)
,
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and

#+ #= (5 − [#= (5 )) − f2
[=,#
(5 − [#= (5 )) =Op

(
1
#

)
.

By combining Theorem 3.2 and Proposition 3.1, we finally obtain the main result of the
present article.

THEOREM 3.3. Assume A1-A2. For any test function 5 ∈ B1 (�=), we have

#W#= (1)2+ #= (5 ) − f2
W=
(5 ) =Op

(
1
√
#

)
,

and

#+ #= (5 − [#= (5 )) − f2
[=
(5 − [= (5 )) =Op

(
1
√
#

)
.

Hence, the main message of the present work is that the computationally very simple
estimator proposed by Lee and Whiteley in a nonadaptive framework (SMC) is still consistent
in an adaptive one (ASMC). However, since we could not adapt easily their proof to our
adaptive context, we propose a new approach to show this consistency result. More details
on the connection between both estimators are given in Appendix A.3.

As emphasized before, among other ingredients, the tools we use connect the study of
Particle Markov Chain Monte Carlo methods and the variance estimation problem in SMC
methods. As such, more generally, they may give some new insights when dealing with com-
plex genealogy-involved problems of Interacting Particle Systems.

Before going into the details of the proofs, let us mention that a numerical experiment on a
toy example is proposed in Appendix B to illustrate the consistency of the Lee and Whiteley
variance estimators in the adaptive and nonadaptive cases. Finally, Appendix C makes a con-
nection between our term by term estimators and the truncated variance estimators recently
proposed by Olsson and Douc in [18] to address the issue of degeneracy in the ancestral lines.

4. Proofs.

4.1. Almost sure convergence. In this section, we provide classical almost sure conver-
gence results on SMC framework under our specific parameterization, namely with adaptive
potential functions and transition kernels. We focus on the properties that do not use the
additional information given by the genealogy of the associated IPS. Therefore, in order to
simplify the story, we give a “rougher” definition of the associated IPS without considering
the genealogy.

• X0 ∼ [⊗#0
• For ? ≥ 1, we let

Xp ∼
#⊗
8=1

 ?,[#
?−1
(- 8?−1, ·)

where, given Xp−1,  ?,[#
?−1

is the Markov kernel defined by

∀(G,�) ∈ �?−1 × B(�?),  ?,[#
?−1
(G,�) :=

[#
?−1&?,# (G,�)
[#
?−1

(
�?−1,#

) .
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It is easy to check that the distributions of the particles are identical to the ones defined
in Section 2.2. Let us begin with the consistency of the corresponding adaptive estimators.
Recall that, by A2, the summary statistics Z= = (Z 1

= , · · · , Z3= ) satisfies [= (Z=) = I∗= and, for all
: ∈ [3], Z:= belongs to B1 (�=).

THEOREM 4.1. Assume A1-A2. For any 5 ∈ B1 (�=), we have

W#= (5 )
0.B.−−−−−→
#→∞

W= (5 ),

and

[#= (5 )
0.B.−−−−−→
#→∞

[= (5 ) .

In particular, we also have

/#= = [#= (Z=)
0.B.−−−−−→
#→∞

[= (Z=) = I∗= .

PROOF. By definition, it is clear that the convergence of W#= implies the convergence of
[#= . Therefore, it is sufficient to establish the first one. We prove by induction that

∀5 ∈ B1 (�=), W#= (5 )
0.B.−−−−−→
#→∞

W= (5 ) .

Step 0:

The almost sure convergence of W#0 = [#0 to W0 = [0 with respect to a test function in B1 (�0)
is given by the strong law of large numbers.

Step = ≥ 1:

We assume that

/#=−1
0.B.−−−−−→
#→∞

I∗=−1

and, for any q ∈ B1 (�=−1),

W#=−1(q)
0.B.−−−−−→
#→∞

W=−1(q) .

For any 5 ∈ B1 (�=), the triangular inequality yields

(10)
��W#= (5 ) −W= (5 )��
≤

��W#= (5 ) −W#=−1&=,# (5 )
��︸                       ︷︷                       ︸

%1 (# )

+
��W#=−1&=,# (5 ) −W

#
=−1&= (5 )

��︸                             ︷︷                             ︸
%2 (# )

+
��W#=−1&= (5 ) −W=−1&= (5 )

��︸                          ︷︷                          ︸
%3 (# )

.

• For %1(# ), we denote

* 8=,# := [#=−1(�=−1,# ) 5 (- 8=) − [#=−1&=,# (5 ).

It is readily seen that

%1(# ) = W#=−1(1)
1
#

#∑
8=1

* 8=,# .
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Given F#
=−1 := f (X0, . . . ,Xn−1), the random variables (* 8

=,#
)1≤8≤# are i.i.d. and such that

E
[
* 8=,#

��F#=−1
]
= [#=−1(�=−1,# )

[#
=−1&=,# (5 )

[#
=−1

(
�=−1,#

) − [#=−1&=,# (5 ) = 0.

Under A1, we can also see that��* 8=,# �� ≤�= := 2
�=−1, ·


∞ ‖ 5 ‖∞ .

Therefore, for any n > 0, Hoeffding’s inequality gives

P

(����� #∑
8=1

* 8=,#

����� ≥ #n
����� F#=−1

)
≤ 2 exp

(
−n2#

2�2
=

)
.

Since this upper-bound is deterministic, this amounts to saying that

P

(����� #∑
8=1

* 8=,#

����� ≥ #n
)
≤ 2 exp

(
−n2#

2�2
=

)
.

Consequently, Borel-Cantelli Lemma ensures that

1
#

#∑
8=1

* 8=,#
0.B.−−−−−→
#→∞

0.

Combined with the induction hypothesis, we get

%1(# ) = W#=−1(1)
1
#

#∑
8=1

* 8=,#
0.B.−−−−−→
#→∞

0.

• For %2(# ), A2 implies that there exists a function ℎ=−1 such that

&=,# (5 ) (G) −&= (5 ) (G) =
〈
ℎ=−1(G,/#=−1),/

#
=−1 − I

∗
=−1

〉
.

Hence, since |ℎ=−1 | and the potential functions�=,I are bounded, Cauchy-Schwarz inequal-
ity gives

%2(# ) ≤ W#=−1(1) ‖ℎ=−1‖∞
��/#=−1 − I

∗
=−1

�� ≤ 
=−2∏
?=0

�?, ·∞ ‖ℎ=−1‖∞
��/#=−1 − I

∗
=−1

�� .
By induction hypothesis, we conclude that

%2(# )
0.B.−−−−−→
#→∞

0.

• For %3(# ), under A1, we have that &= (5 ) ∈ B1 (�=−1). Thus, the induction hypothesis
gives

%3(# )
0.B.−−−−−→
#→∞

0.

Considering (10), the verification of the convergence

∀5 ∈ B1 (�=), W#= (5 )
0.B.−−−−−→
#→∞

W= (5 )

is then complete. �
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4.2. Proof of Theorem 2.1. We prove by induction that
√
#

(
W#= (5 ) −W= (5 )

) d−−−−−→
#→∞

N
(
0, f2

W=
(5 )

)
.

The verification of step 0 comes from the CLT for i.i.d. random variables. For step = ≥ 1, we
suppose that

∀0 ≤ ? ≤ = − 1,
√
#

(
W#? (5 ) −W? (5 )

) d−−−−−→
#→∞

N
(
0, f2

W?
(5 )

)
.

Notice that, by A2, this implies that

(11) ∀0 ≤ ? ≤ = − 1,
√
#

���/#?−1 − I
∗
?−1

��� =Op (1) .

For any test function 5 ∈ B1 (�=), we denote 5? := &?,= (5 ) ∈ B1 (�?). For any (G,�) ∈ �0 ×
B(�0) we set&0(G,�) =&0,# (G,�) = XG (�). Taking into account the convention W#−1 = W0 = [0
and the fact that W= = W0&0,= , we have the telescoping decomposition

W#= (5 ) −W= (5 )

=

=∑
?=0

(
W#? (5?) −W#?−1&? (5?)

)
=

1
#

=∑
?=0

#∑
8=1

{(
W#? (1) 5? (- 8?) −W#?−1&?,# (5?)

)
+

(
W#?−1&?,# (5?) −W

#
?−1&? (5?)

)}
.

For : ∈ [(= + 1)# ], we denote

?: :=
⌊
:

#

⌋
and 8: := : − ?: ×# .

We define the filtration

∀: ∈ [(= + 1)# ], E#
:
= F#?:−1 ∨ f (-

1
?:
, · · · ,- 8:?: ) .

Then, we set

* #
:

:=
1
√
#

(
W#?: (1) 5?: (-

8:
?:
) −W#?:−1&?: ,# (5?: )

)
,

and

�#? :=
√
#

(
W#?−1&?,# (5?) −W

#
?−1&? (5?)

)
,

so that

(12)
√
#

(
W#= (5 ) −W= (5 )

)
=

(=+1)#∑
:=1

(
* #
:
+ 1
#
�#?:

)
=

(=+1)#∑
:=1

* #
:
+

=∑
?=0

�#? .

From A2, we know that there exists a function ℎ?−1 such that

�#? =
√
#

〈
W#?−1

(
ℎ?−1(·,/#?−1)

)
,/#?−1 − I

∗
?−1

〉
=
√
#

〈
W#?−1

(
ℎ?−1(·,/#?−1) −ℎ?−1(·, I∗?−1)

)
,/#?−1 − I

∗
?−1

〉
+
√
#

〈
W#?−1

(
ℎ?−1(·, I∗?−1)

)
,/#?−1 − I

∗
?−1

〉
.
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• For the first part, we have by Cauchy-Schwarz inequality���√# 〈
W#?−1

(
ℎ?−1(·,/#?−1) −ℎ?−1(·, I∗?−1)

)
,/#?−1 − I

∗
?−1

〉���
≤
√
# W#?−1(1)

���/#?−1 − I
∗
?−1

��� sup
G ∈�?−1

���ℎ?−1(G,/#?−1) −ℎ?−1(G,I∗?−1)
��� .

Then, let us consider

Ω?−1 =

{
l ∈ Ω : /#?−1(l) −−−−−→

#→∞
I∗?−1

}
.

By Theorem 4.1, Ω?−1 has probability one. Therefore, by A2, for all l ∈ Ω?−1 and all
n > 0, there exists # (l,n) > 0 such that, for all # > # (l,n),

sup
G ∈�?−1

���ℎ?−1(G,/#?−1(l)) −ℎ?−1(G,I∗?−1)
��� < n.

This means that

sup
G ∈�?−1

���ℎ?−1(G,/#?−1) −ℎ?−1(G,I∗?−1)
��� 0.B.−−−−−→
#→∞

0.

Thus, we deduce from (11) that
√
#

〈
W#?−1

(
ℎ?−1(·,/#?−1) −ℎ?−1(·, I∗?−1)

)
,/#?−1 − I

∗
?−1

〉 P−−−−−→
#→∞

0.

• For the second part, since Theorem 4.1 and A2 imply that

W#?−1(ℎ?−1(·, I∗?−1))
0.B.−−−−−→
#→∞

W?−1(ℎ?−1(·, I∗?−1)) = 0,

we conclude by (11) that
√
#

〈
W#?−1

(
ℎ?−1(·, I∗?−1)

)
,/#?−1 − I

∗
?−1

〉 P−−−−−→
#→∞

0.

Hence we have proved that

�#?
P−−−−−→

#→∞
0,

which leads to
=∑
?=0

�#?
P−−−−−→

#→∞
0.

Next, it is easy to check that (* #
:
)1≤:≤(=+1)# is an (E#

:
)1≤:≤(=+1)# -martingale difference

array. In order to apply Theorem 2.3 in [17], we just have to check that

• By A1,

(13) max
1≤:≤(=+1)#

��* #
:

�� ≤ 2
√
#
‖ 5 ‖∞ max

1≤?≤=

?−1∏
@=0

�@, ·∞ ≤ 2
√
#
‖ 5 ‖∞

=∑
?=1

?−1∏
@=0

�@, ·∞ ,
which shows that (max1≤:≤(=+1)# |* #

:
|) is uniformly bounded in L2-norm.

• From (13), we also get that

max
1≤:≤(=+1)#

��* #
:

�� P−−−−−→
#→∞

0.
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• Standard calculation gives

(=+1)#∑
:=1

(
* #
:

)2

=

=∑
?=0

(
W#? (1)2[#? (5 2

? ) + (W#?−1&?,# (5?))
2 − 2W#? (1)[#? (5?)W#?−1&?,# (5?)

)
.

As shown above, the convergence of �#? indicates that

W#?−1&?,# (5?) −W
#
?−1&? (5?)

P−−−−−→
#→∞

0.

Then, by applying Theorem 4.1, we obtain

(=+1)#∑
:=1

(
* #
:

)2 P−−−−−→
#→∞

f2
W=
(5 ),

Therefore, we have the following central limit theorem

(=+1)#∑
:=1

* #
:

d−−−−−→
#→∞

N
(
0, f2

W=
(5 )

)
.

Returning to (12), the conclusion follows from Slutsky’s Lemma.

4.3. Proof of Theorem 3.1. We want to show that, under A1-A2, for any test functions
q,k ∈ B1 (�=) and for any coalescence indicator 1 ∈ {0,1}=+1, we have

Γ1=,# (q ⊗k ) − Γ
1
= (q ⊗k ) =Op

(
1
√
#

)
.

Before proceeding, let us introduce some additional notation. With a slight abuse of notation,
for a coalescence indicator 1 = (10, . . . ,1=) ∈ {0,1}=+1, we denote, for all 0 ≤ ? ≤ =,

Γ1? := Γ
(10,...,1? )
? and Γ1?,# := Γ

(10,...,1? )
?,#

with the convention

Γ1−1,# = Γ1−1 := [⊗2
0 �10 .

Note that, with this convention, we have

Γ1? = Γ1?−1&
⊗2
? �1? .

We also remark that, for any 1= ∈ {0,1} and any q,k ∈ B1 (�=), there exists 5 and 6 in
B1 (�=−1) such that

(14) & ⊗2
= �1= (q ⊗k ) = 5 ⊗ 6.

Specifically, for 1= = 0, it suffices to consider 5 =&= (q) and 6 =&= (k ), while for 1= = 1 one
can take 5 =&= (qk ) and 6 =&= (1) =�=−1. As usual, the proof is done by induction.

- Step 0:
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• If 10 = 1, (6) and Definition 3.1 give

E
[
Γ10,# (q ⊗k )

]
= E

[
1
#

#∑
8=1

q (- 80)k (-
8
0)

]
= [0(qk ) = Γ10 (q ⊗k ) .

Hence, the central limit theorem yields
√
#

(
Γ10,# (q ⊗k ) − Γ

1
0 (q ⊗k )

) d−−−−−→
#→∞

N
(
0, [0(q2k 2) − [0(qk )2

)
,

so that

Γ10,# (q ⊗k ) − Γ
1
0 (q ⊗k ) =Op

(
1
√
#

)
.

• If 10 = 0, the central limit theorem ensures that

[#0 (q) − [0(q) =Op

(
1
√
#

)
and [#0 (k ) − [0(k ) =Op

(
1
√
#

)
.

Therefore, we have

[#0 (q)[
#
0 (k ) − [0(q)[0(k )

=

(
[#0 (q) − [0(q)

)
[#0 (k ) + [0(q)

(
[#0 (k ) − [0(k )

)
=Op

(
1
√
#

)
.

Thanks to (1), one has

Γ10,# (q ⊗k ) =
#

# − 1

(
[#0 (q)[

#
0 (k ) −

1
# 2

#∑
8=1

q (- 80)k (-
8
0)

)
.

Combined with Definition 3.1 and the law of large numbers, one deduces that

Γ10,# (q ⊗k ) − Γ
1
0 (q ⊗k ) = Γ10,# (q ⊗k ) − [0(q)[0(k ) =Op

(
1
√
#

)
.

- Step = ≥ 1:

We suppose that for any test functions 5 ,6 ∈ B1 (�=−1) and coalescence indicator 1, we
have

Γ1=−1,# (5 ⊗ 6) − Γ
1
=−1(5 ⊗ 6) =Op

(
1
√
#

)
.

Next, we consider the following decomposition

(15)

Γ1=,# (q ⊗k ) − Γ
1
= (q ⊗k ) = Γ1=,# (q ⊗k ) − Γ

1
=−1,#&

⊗2
=,#
�1= (q ⊗k )︸                                           ︷︷                                           ︸

'1 (# )

+ Γ1=−1,#&
⊗2
=,#
�1= (q ⊗k ) − Γ1=−1,#&

⊗2
= �1= (q ⊗k )︸                                                        ︷︷                                                        ︸

'2 (# )

+ Γ1=−1,#&
⊗2
= �1= (q ⊗k ) − Γ1=−1&

⊗2
= �1= (q ⊗k ).︸                                                      ︷︷                                                      ︸

'3 (# )

The tools to terminate the proof are the following ones:
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• Lemma 4.1 shows that

'1(# ) =Op

(
1
√
#

)
.

• Lemma 4.2 and the fact that one may write �1= (q ⊗k ) as 5 ⊗ 6 for any 1= ensure that

'2(# ) =Op

(
1
√
#

)
.

• Finally, the convergence rate

'3(# ) =Op

(
1
√
#

)
.

is a direct consequence of (14) and the induction hypothesis.

4.4. Technical results. This section presents some useful technical results. Before going
further, remind that

Γ1=,# (1) := W#= (1)2
#=−1

(# − 1)=+1
∑

ℓ
[2]
0:= ∈( (# )2)×(=+1)


=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )

 .
If we set

(16) Λℓ
[2]
=
= :=

∑
ℓ
[2]
0:=−1∈( (# )2)×=


=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )


together with the convention Λ

ℓ
[2]
0

0 := 1, we may write

(17) Γ1=,# (1) := W#= (1)2
#=−1

(# − 1)=+1
∑

ℓ
[2]
= ∈(# )2

Λℓ
[2]
=
= ,

so that

(18) Γ1=,# (1)
2 = W#= (1)4

(
#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2

Λℓ
[2]
=
= Λℓ

′ [2]
=
= .

Note that (17) is still true when = = 0. Then, for = ≥ 1, we have by definition

(19) Λℓ
[2]
=
= =

∑
ℓ
[2]
=−1∈(# )2

Λ
ℓ
[2]
=−1
=−1 _

1
=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1).

This decomposition will appear several times in the sequel for it is a keystone to study the
behavior of the coalescent tree-based measures.

PROPOSITION 4.1. Assume A1. For any coalescence indicator 1, we have

sup
#>1

E
[
Γ1=,# (1)

2
]
< +∞.

In particular, the sequence (Γ1
=,#
(1);# ≥ 1) is uniformly tight.
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PROOF. We give a proof by induction. The verification for step 0 is trivial as Γ10,# (1) = 1.
For = ≥ 1, we suppose that

sup
#>1

E
[
Γ1=−1,# (1)

2
]
< +∞.

As defined in Section 2.2, the IPS associated with ASMC is a Markov chain (Xn)=≥0 with
genealogy (An)=≥0 tracking the indice of the parent of each particle at each level. More
precisely,�8

?−1 = 9 means that the parent of the particle - 8? is - 9

?−1. Accordingly, the filtration
(G#= )=≥0 with the genealogy of the IPS is defined by

G#0 := f (X0)

and, for = ≥ 1,

G#= := f (A0, . . . ,An−1,X0, . . . ,Xn) .

By combining (18) and (19), and taking into account that

W#= (1) =
=−1∏
?=0

[#? (�?,# ) = W#=−1(1)[
#
=−1(�=−1,# ) = W#=−1(1)<(Xn−1) (�=−1,# )

is G#
=−1-measurable, we have

(20) E
[
Γ1=,# (1)

2 �� G#=−1

]
= W#=−1(1)

4
(

#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]
=−1,ℓ

′ [2]
=−1 ) ∈( (# )2)×2

Λ
ℓ
[2]
=−1
=−1Λ

ℓ
′ [2]
=−1
=−1

∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2

<(Xn−1) (�=−1,# )4 E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
.

For the notation concerning the indices in the IPS, we use

[# ]@? :=
{
(81, . . . , 8@) ∈ [# ]@ : Card{81, . . . , 8@} = ?

}
.

In particular, we denote (# )@ := [# ]@@ . We also write(
(# )2

)×@
:= (# )2 × (# )2 × · · · × (# )2︸                           ︷︷                           ︸

@ times

.

With a slight abuse of notation, we admit that

((8, 9), (:, ;)) = (8, 9, :, ;).

With this notation, for # ≥ 4, we have the decomposition

((# )2)×2 =
(
((# )2)×2 ∩ [# ]42

)
∪

(
((# )2)×2 ∩ [# ]43

)
∪ (# )4.

The idea of the proof consists in analyzing (20) with respect to the three terms that appear
in the right-hand side of the latter. Recall from (3) that, given Xn−1, we make an indepen-
dent multinomial selection of the parent of each particle at step = according to the discrete
probability measure

(=−1,# (Xn−1, ·) =
#∑
:=1

�=−1,# (-:=−1)∑#
9=1�=−1,# (- 9

=−1)
X: =

#∑
:=1

�=−1,# (-:=−1)
# <(Xn−1) (�=−1,# )

X: ,
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with, for all : ∈ [# ],

0 <
�=−1,# (-:=−1)

# <(Xn−1) (�=−1,# )
≤

�=−1, ·

∞

# <(Xn−1) (�=−1,# )
.

We also recall that

_1=−1(�
ℓ
[2]
=

=−1, ℓ
[2]
=−1) = 1{1=−1=0}1{�ℓ1=

=−1=ℓ
1
=−1≠�

ℓ2=
=−1=ℓ

2
=−1 }
+ 1{1=−1=1}1{�ℓ1=

=−1=ℓ
1
=−1=�

ℓ2=
=−1≠ℓ

2
=−1 }

.

• Case 1: (ℓ [2]= , ℓ
′ [2]
= ) ∈ ((# )2)×2 ∩ [# ]42 .

In this case, there are only two distinct random variables among�ℓ
1
=

=−1,�ℓ
2
=

=−1,�ℓ
′1
=

=−1,�ℓ
′2
=

=−1.
Recall that ℓ1

= ≠ ℓ
2
= by construction. Let us first suppose that

ℓ1
= = ℓ

′1
= and ℓ2

= = ℓ
′2
= .

Thus, we deduce that

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤ E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)

����� G#=−1

]
= 1{1=−1=0}P

(
�
ℓ1
=

=−1 = ℓ
1
=−1,�

ℓ2
=

=−1 = ℓ
2
=−1

���� G#=−1

)
+ 1{1=−1=1}P

(
�
ℓ1
=

=−1 = ℓ
1
=−1 =�

ℓ2
=

=−1

���� G#=−1

)
≤

( �=−1, ·

∞

# <(Xn−1) (�=−1,# )

)2

.

The analysis for the case where

ℓ1
= = ℓ

′2
= and ℓ2

= = ℓ
′1
=

is analogue. Hence, we conclude that

(21) E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤

( �=−1, ·

∞

# <(Xn−1) (�=−1,# )

)2

.

Meanwhile, we notice that

#
(
((# )2)×2 ∩ [# ]42

)
= 2# (# − 1) .

Putting all things together yields

∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2∩[# ]42

<(Xn−1) (�=−1,# )4 E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]

≤ 2(# − 1)
#

�=−1, ·
4
∞ .
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• Case 2: (ℓ [2]= , ℓ
′ [2]
= ) ∈ ((# )2)×2 ∩ [# ]43 .

As noticed in the previous case, the number of different indices within (ℓ [2]= , ℓ
′ [2]
= ) is the

only thing that matters for the upper-bound in (21). Accordingly, the same reasoning gives
this time

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤

( �=−1, ·

∞

# <(Xn−1) (�=−1,# )

)3

.

Since the total number of choices is

#
(
((# )2)×2 ∩ [# ]43

)
= 4# (# − 1) (# − 2),

it comes ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2∩[# ]43

<(Xn−1) (�=−1,# )4 E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]

≤ 4(# − 1) (# − 2)
# 2

�=−1, ·
4
∞ .

• Case 3: (ℓ [2]= , ℓ
′ [2]
= ) ∈ (# )4.

This time, we get

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤

( �=−1, ·

∞

# <(Xn−1) (�=−1,# )

)4

,

and

#
(
(# )4

)
= # (# − 1) (# − 2) (# − 3),

so that ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈(# )4

<(Xn−1) (�=−1,# )4 E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤ (# − 1) (# − 2) (# − 3)

# 3

�=−1, ·
4
∞ .

As a consequence, since

2 + 4(# − 2)
#

+ (# − 2) (# − 3)
# 2 ≤ 7,

an upper-bound for (20) is

E
[
Γ1=,# (1)

2 �� G#=−1

]
≤7

(
#=−1

(# − 1)=+1

)2
# − 1
#

�=−1, ·
4
∞W

#
=−1(1)

4
∑

(ℓ [2]
=−1,ℓ

′ [2]
=−1 ) ∈( (# )2)×2

Λ
ℓ
[2]
=−1
=−1Λ

ℓ
′ [2]
=−1
=−1 .

Replacing = with (= − 1) in (18) allows us to conclude that

E
[
Γ1=,# (1)

2 �� G#=−1

]
≤ 7

#

# − 1
�=−1, ·

4
∞ Γ1=−1,# (1)

2.
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Finally, by applying the induction hypothesis, we have

sup
# ≥4

E
[
Γ1=,# (1)

2
]
= sup
# ≥4

E
[
E

[
Γ1=,# (1)

2 �� G#=−1

] ]
≤ 28

3
�=−1, ·

4
∞ sup
# ≥4

E
[
Γ1=−1,# (1)

2
]
< +∞,

which ends the proof of Proposition 4.1. �

LEMMA 4.1. Under A1, for any test functions 5 ,6 ∈ B1 (�=), we have, for all = ≥ 1,

(22) E
[
Γ1=,# (5 ⊗ 6)

���� G#=−1

]
= Γ1=−1,#&

⊗2
=,#
�1= (5 ⊗ 6),

as well as

Γ1=,# (5 ⊗ 6) − Γ
1
=−1,#&

⊗2
=,#
�1= (5 ⊗ 6) =Op

(
1
√
#

)
.

PROOF. First, by exploiting the notation defined in (16), we have

Γ1=,# (5 ⊗ 6) := W#= (1)2
#=−1

(# − 1)=+1
∑

ℓ
[2]
= ∈(# )2

Λℓ
[2]
=
= �1= (5 ⊗ 6) (-

ℓ
[2]
=
= ),

and (22) is then a direct consequence of Proposition A.1 since for any ℓ [2]= ∈ (# )2

E

[
W#= (1)2

#=−1

(# − 1)=+1
Λℓ
[2]
=
= �1= (5 ⊗ 6) (-

ℓ
[2]
=
= )

����� G#=−1

]
=

1
# (# − 1) Γ

1
=−1,#&

⊗2
=,#
�1= (5 ⊗ 6),

where the right-hand side does not depend on ℓ [2]= . Second, thanks to Chebyshev’s inequality,
it suffices to verify that

Var
[
Γ1=,# (5 ⊗ 6) − Γ

1
=−1,#&

⊗2
=,#
�1= (5 ⊗ 6)

]
=O

(
1
#

)
.

For this, by (22), we just have to show that

E
[
Γ1=,# (5 ⊗ 6)

2 − (Γ1=−1,#&
⊗2
=,#
�1= (5 ⊗ 6))2

]
=O

(
1
#

)
.

Then, recall that, by definition,

Γ1=,# (5 ⊗ 6)
2

=W#= (1)4
(

#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

(
�1= (5 ⊗ 6)

) ⊗2 (- ℓ
[2]
=
= ,-

ℓ
′ [2]
=
= )

=W#= (1)4
(

#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈(# )4

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

(
�1= (5 ⊗ 6)

) ⊗2 (- ℓ
[2]
=
= ,-

ℓ
′ [2]
=
= )

︸                                                                                                ︷︷                                                                                                ︸
'1 (# )

+W#= (1)4
(

#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2\(# )4

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

(
�1= (5 ⊗ 6)

) ⊗2 (- ℓ
[2]
=
= ,-

ℓ
′ [2]
=
= )

︸                                                                                                           ︷︷                                                                                                           ︸
'2 (# )

.
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• For '1(# ), our goal is to establish that

E
[
'1(# ) − (Γ1=−1,#&

⊗2
=,#
�1= (5 ⊗ 6))2

]
=O

(
1
#

)
.

In fact, for any (ℓ [2]= , ℓ
′ [2]
= ) ∈ (# )4,

(�ℓ
1
=
= ,-

ℓ1
=
= ,�

ℓ2
=
= ,-

ℓ2
=
= ) and (�ℓ

′1
=
= ,-

ℓ
′1
=
= ,�

ℓ
′2
=
= ,-

ℓ
′2
=
= )

are conditionally independent given G#
=−1 by construction of the IPS. Hence, by applying

Proposition A.1 respectively for ℓ [2]= and for ℓ
′ [2]
= , we have

E

[
W#= (1)4

(
#=−1

(# − 1)=+1

)2

Λℓ
[2]
=
= Λℓ

′ [2]
=
= �1= (5 ⊗ 6) (-

ℓ
[2]
=
= )�1= (5 ⊗ 6) (-

ℓ
′ [2]
=
= )

����� G#=−1

]
=

1
# 2(# − 1)2

(Γ#=−1&
⊗2
=,#
�1= (5 ⊗ 6))2.

Then, since

#
(
(# )4

)
= # (# − 1) (# − 2) (# − 3),

we deduce that

E
[
'1(# ) − (Γ1=−1,#&

⊗2
=,#
�1= (5 ⊗ 6))2

���� G#=−1

]
=

(
# (# − 1) (# − 2) (# − 3)

# 2(# − 1)2
− 1

)
(Γ#=−1&

⊗2
=,#
�1= (5 ⊗ 6))2,

and

E
[
'1(# ) − (Γ1=−1,#&

⊗2
=,#
�1= (5 ⊗ 6))2

]
=

(
# (# − 1) (# − 2) (# − 3)

# 2(# − 1)2
− 1

)
E

[
(Γ#=−1&

⊗2
=,#
�1= (5 ⊗ 6))2

]
=O

(
1
#

)
,

where the final equality is due to Proposition 4.1, taking into account that 5 and 6 are
bounded, and so is �=−1,# uniformly with respect to # by A1.

• For '2(# ), the nonnegativity of Λℓ
[2]
=
= implies

E['2(# )] ≤ E
W#= (1)4

(
#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2\(# )4

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

 ‖ 5 ‖2∞ ‖6‖2∞ .
So the proof will be finished once we have shown that

E
W#= (1)4

(
#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2\(# )4

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

 =O

(
1
#

)
.

Once again, we proceed by induction. At step 0, we have

1
# 2(# − 1)2

∑
(ℓ [2]0 ,ℓ

′ [2]
0 ) ∈( (# )2)×2\(# )4

1 = 1 − # (# − 1) (# − 2) (# − 3)
# 2(# − 1)2

=O

(
1
#

)
.
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For step = ≥ 1, we suppose that

E

W
#
=−1(1)

4
(
#=−2

(# − 1)=

)2 ∑
(ℓ [2]
=−1,ℓ

′ [2]
=−1 ) ∈( (# )2)×2\(# )4

Λ
ℓ
[2]
=−1
=−1Λ

ℓ
′ [2]
=−1
=−1

 =O

(
1
#

)
.

The adaptation of (20) to the present context gives

E
W#= (1)4

(
#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2\(# )4

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

����� G#=−1


= W#=−1(1)

4
(

#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]
=−1,ℓ

′ [2]
=−1 ) ∈( (# )2)×2

Λ
ℓ
[2]
=−1
=−1Λ

ℓ
′ [2]
=−1
=−1∑

(ℓ [2]= ,ℓ
′ [2]
= ) ∈( (# )2)×2\(# )4

<(Xn−1) (�=−1,# )4

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
.

Now, for # ≥ 4, it is clear that

((# )2)×2\(# )4 =
(
((# )2)×2 ∩ [# ]42

)
∪

(
((# )2)×2 ∩ [# ]43

)
.

– Case 1: (ℓ [2]= , ℓ
′ [2]
= ) ∈ ((# )2)×2 ∩ [# ]42 .

By definition of (=−1,# in (3),

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]

≤
( �=−1, ·


∞

# <(Xn−1) (�=−1,# )

)2 (
1{1=−1=1,ℓ1

=−1=ℓ
′1
=−1 }
+ 1{1=−1=0,ℓ1

=−1=ℓ
′1
=−1,ℓ

2
=−1=ℓ

′2
=−1 }

)
≤

( �=−1, ·

∞

# <(Xn−1) (�=−1,# )

)2

1{#{ℓ1
=−1,ℓ

′1
=−1,ℓ

2
=−1,ℓ

′2
=−1 }<4},

and since

#
(
((# )2)×2 ∩ [# ]42

)
= 2# (# − 1),

it comes ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2∩[# ]42

<(Xn−1) (�=−1,# )4

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤ 2# (# − 1)

# 2

�=−1, ·
4
∞ 1{#{ℓ1

=−1,ℓ
′1
=−1,ℓ

2
=−1,ℓ

′2
=−1 }<4} .
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– Case 2: (ℓ [2]= , ℓ
′ [2]
= ) ∈ ((# )2)×2 ∩ [# ]43 .

First, we suppose that ℓ1
= = ℓ

′1
= . As for the previous case, we have

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]

≤
( �=−1, ·


∞

# <(Xn−1) (�=−1,# )

)3 (
1{1=−1=1,ℓ1

=−1=ℓ
′1
=−1 }
+ 1{1=−1=0,ℓ1

=−1=ℓ
′1
=−1 }

)
≤

( �=−1, ·

∞

# <(Xn−1) (�=−1,# )

)3

1{#{ℓ1
=−1,ℓ

′1
=−1,ℓ

2
=−1,ℓ

′2
=−1 }<4} .

By the same reasoning, for ℓ1
= = ℓ

′2
= , ℓ2

= = ℓ
′1
= and ℓ2

= = ℓ
′2
= , we also have

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]

≤
( �=−1, ·


∞

# <(Xn−1) (�=−1,# )

)3

1{#{ℓ1
=−1,ℓ

′1
=−1,ℓ

2
=−1,ℓ

′2
=−1 }<4} .

In addition, since

#
(
((# )2)×2 ∩ [# ]43

)
= 4# (# − 1) (# − 2),

we get this time∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2∩[# ]43

<(Xn−1) (�=−1,# )4

E

[
_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)_

1
=−1(�

ℓ
′ [2]
=

=−1 , ℓ
′ [2]
=−1 )

����� G#=−1

]
≤ 4# (# − 1) (# − 2)

# 3

�=−1, ·
4
∞ 1{#{ℓ1

=−1,ℓ
′1
=−1,ℓ

2
=−1,ℓ

′2
=−1 }<4} .

By gathering both cases, we have

E
W#= (1)4

(
#=−1

(# − 1)=+1

)2 ∑
(ℓ [2]= ,ℓ

′ [2]
= ) ∈( (# )2)×2\(# )4

Λℓ
[2]
=
= Λℓ

′ [2]
=
=

����� G#=−1


≤W#=−1(1)

4
(
#=−2

(# − 1)=

)2
# 2

(# − 1)2

(
2# (# − 1)

# 2 + 4# (# − 1) (# − 2)
# 3

) �=−1, ·
4
∞∑

(ℓ [2]
=−1,ℓ

′ [2]
=−1 ) ∈( (# )2)×2

Λ
ℓ
[2]
=−1
=−1Λ

ℓ
′ [2]
=−1
=−1 1{#{ℓ1

=−1,ℓ
′1
=−1,ℓ

2
=−1,ℓ

′2
=−1 }<4}

≤6
# 2

(# − 1)2
�=−1, ·

4
∞W

#
=−1(1)

4
(
#=−2

(# − 1)=

)2 ∑
(ℓ [2]
=−1,ℓ

′ [2]
=−1 ) ∈( (# )2)×2\(# )4

Λ
ℓ
[2]
=−1
=−1Λ

ℓ
′ [2]
=−1
=−1 .

The conclusion follows from the induction hypothesis by taking the expectation on both
sides.
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This ends the proof of Lemma 4.1. �

LEMMA 4.2. AssumeA1-A2, then for any test functions 5 ,6 ∈ B1 (�=) and for all = ≥ 1,

Γ1=−1,#&
⊗2
=,#
(5 ⊗ 6) − Γ1=−1,#&

⊗2
= (5 ⊗ 6) =Op

(
1
√
#

)
.

PROOF. The verification shares some resemblance with the convergence of %2(# ) in the
proof of Theorem 4.1. Specifically, we start with the following decomposition:���Γ1=−1,#&

⊗2
=,#
(5 ⊗ 6) − Γ1=−1,#&

⊗2
= (5 ⊗ 6)

���
≤

���Γ1=−1,#&
⊗2
=,#
(5 ⊗ 6) − Γ1=−1,# (&=,# ⊗&=) (5 ⊗ 6)

���︸                                                          ︷︷                                                          ︸
�1 (# )

+
���Γ1=−1,# (&=,# ⊗&=) (5 ⊗ 6) − Γ

1
=−1,#&

⊗2
= (5 ⊗ 6)

���︸                                                         ︷︷                                                         ︸
�2 (# )

.

For �1(# ), we may write

(& ⊗2
=,#
(5 ⊗ 6) − (&=,# ⊗&=) (5 ⊗ 6)) (G,~) =&=,# (5 ) (G) (&=,# (6) (~) −&= (6) (~)) .

By A2, for any 6 ∈ B1 (�=), there exists a bounded function ℎ=−1 such that��&=,# (6) (~) −&= (6) (~)�� = ��〈ℎ=−1(~,/#=−1),/
#
=−1 − I

∗
=−1

〉�� ≤ ‖ℎ=−1‖∞
��/#=−1 − I

∗
=−1

�� .
Since, in addition,

|&=,# (5 ) (G) | ≤
�=−1, ·


∞ ‖ 5 ‖∞ ,

it comes

�1(# ) ≤ Γ1=−1,# (1)
�=−1, ·


∞ ‖ 5 ‖∞ ‖ℎ=−1‖∞

��/#=−1 − I
∗
=−1

�� .
By Proposition 4.1, one has

Γ1=−1,# (1) =Op (1) .
In addition, a by-product (11) of Theorem 2.1 is that��/#=−1 − I

∗
=−1

�� =Op

(
1
√
#

)
.

Hence, one concludes that

�1(# ) =Op

(
1
√
#

)
.

The reasoning for �2(# ) is the same. �

4.5. Connection between the estimators. In this section, we give some combinatorial
results on the coalescent tree-based measures Γ1

=,#
. In particular, they allow us to connect

the variance estimator (9) of Lee & Whiteley and our term by term estimators. As mentioned
before, these relations do not depend onA2: they are provided by the structure of the IPS and
the underlying multinomial selection scheme. In this respect, recall that, underA1, Equation
(3) is always well-defined for the denominator is always strictly positive, and the same holds
true for the IPS itself. This is in fact the only condition required here.
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PROPOSITION 4.2. Provided that the IPS is well-defined, then for any test function � ∈
B1 (�2

=), we have the decompositions:

(W#= )⊗2(� ) =
∑

1∈{0,1}=+1


=∏
?=0

(# − 1)1−1?
#

 Γ1=,# (� ),

and

([#= )⊗2(� ) =
∑

1∈{0,1}=+1


=∏
?=0

(# − 1)1−1?
#

 Γ̄1=,# (� ) .

PROOF. Since

Γ̄1=,# (� ) :=
#=−1

(# − 1)=+1
∑

ℓ
[2]
0:= ∈( (# )2)×(=+1)


=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )

�1= (� ) (- ℓ
[2]
=
= ),

we have, for any 1 = (10,11, . . . ,1=) ∈ {0,1}=+1,
=∏
?=0

(# − 1)1−1?
#

 Γ̄1=,# (� )

=
#=−1

(# − 1)=+1
∑

ℓ
[2]
0:= ∈( (# )2)×(=+1)


=∏
?=0

(# − 1)1−1?
#



=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )

�1= (� ) (- ℓ
[2]
=
= ) .

Enumerating all the possibilities for the coalescence indicator 1 ∈ {0,1}=+1 leads to∑
1∈{0,1}=+1


=∏
?=0

(# − 1)1−1?
#

 Γ̄1=,# (� )

=
∑

ℓ
[2]
0 ∈(# )2

· · ·
∑

ℓ
[2]
=−1∈(# )2


=−1∏
?=0

(
1
#

1
{�
ℓ1
?+1
? =�

ℓ2
?+1
? =ℓ1

?≠ℓ
2
? }
+ # − 1

#
1
{�
ℓ1
?+1
? =ℓ1

?≠�
ℓ2
?+1
? =ℓ2

? }

)(
#

# − 1

)= {
# − 1
#

<�2(Xn)�0(� ) +
1
#
<�2(Xn)�1(� )

}
.

To conclude, one just has to observe that∑
ℓ
[2]
0 ∈(# )2

· · ·
∑

ℓ
[2]
=−1∈(# )2


=−1∏
?=0

(
1
#

1
{�
ℓ1
?+1
? =�

ℓ2
?+1
? =ℓ1

?≠ℓ
2
? }
+ # − 1

#
1
{�
ℓ1
?+1
? =ℓ1

?≠�
ℓ2
?+1
? =ℓ2

? }

) =

(
# − 1
#

)=
while, by (1),

# − 1
#

<�2(Xn)�0(� ) +
1
#
<�2(Xn)�1(� ) =<⊗2(Xn) (� ) = ([#= )⊗2(� ) .

Multiplying both sides by W#= (1)2 gives the corresponding relation for (W#= )⊗2(� ). �
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We can now proceed with the proof of Proposition 3.1. Recall that the goal is to show that

#+ #= (5 ) − f2
[=,#
(5 ) = #+ #= (5 ) −

=∑
?=0

{
Γ̄
(?)
=,#
(5 ⊗2) − Γ̄ (∅)

=,#
(5 ⊗2)

}
=Op

(
1
#

)
,

and

#+ #= (5 − [#= (5 )) −
=∑
?=0

{
Γ̄
(?)
=,#

( [
5 − [#= (5 )

] ⊗2
)
− Γ̄ (∅)

=,#

( [
5 − [#= (5 )

] ⊗2
)}

=Op

(
1
#

)
.

By construction, we have

+ #= (5 ) = [#= (5 )2 − Γ̄
(∅)
=,#
(5 ⊗2) = ([#= )⊗2(5 ⊗2) − Γ̄ (∅)

=,#
(5 ⊗2) .

An implication of Proposition 4.1 is that, for any test function 5 and any coalescence indicator
1,

Γ̄1=,# (5
⊗2) =Op (1) .

Thus, a consequence of Proposition 4.2 is

([#= )⊗2(5 ⊗2) =
(
# − 1
#

)=+1
Γ̄ (∅)
=,#
(5 ⊗2) + 1

#

(
# − 1
#

)= =∑
?=0

Γ̄
(?)
=,#
(5 ⊗2) +Op

(
1
# 2

)
.

The desired formula is then obtained by remarking that(
# − 1
#

)=
= 1 −O

(
1
#

)
and

(
# − 1
#

)=+1
− 1 = −= + 1

#
+O

(
1
# 2

)
.

Similarly, since

Γ̄1=,#

( [
5 − [#= (5 )

] ⊗2
)
=Op (1) ,

the same algebraic manipulation yields

#+ #= (5 − [#= (5 )) −
=∑
?=0

{
Γ̄
(?)
=,#

( [
5 − [#= (5 )

] ⊗2
)
− Γ̄ (∅)

=,#

( [
5 − [#= (5 )

] ⊗2
)}

=Op

(
1
#

)
.

This closes the proof of Proposition 3.1.

APPENDIX A: MANY-BODY FEYNMAN-KAC MODELS

The many-body Feynman-Kac model was proposed in [13] to study the propagation of
chaos property of the Conditional Particle Markov Chain Monte Carlo introduced in [1]. The
basic idea is to trace the information of all particles in the IPS along with its genealogy, and
to construct an instrumental particle block which is heavily dependent (identical) to some
specific particles. We call these instrumental particles the coupled particle block of the IPS.

A.1. Duality formula. At each layer, the particles in the original IPS are denoted by Xp,
with its genealogy Ap−1. The coupled particle block of @ particles is denoted by -̃ [@ ]? , with

its genealogy denoted by �̃ [@ ]
?−1. The corresponding variables in the integral operators will be

denoted by xp , ap−1, G̃ [@ ]? and 0̃ [@ ]
?−1 respectively.

Before giving specific definitions, we want to mention that the mathematical object we
would like to look into is the whole particle system, namely the original IPS and the coupled
particle block with genealogy. At each layer ? , we are interested by the tuple:

(Xp,Ap−1, -̃
[@ ]
? , �̃

[@ ]
?−1).
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As for the basic idea of Particle Markov Chain Monte Carlo method [1], we study respectively
the distributions of

Xp,Ap−1
�� -̃ [@ ]? , �̃

[@ ]
?−1

and

-̃
[@ ]
? , �̃

[@ ]
?−1

�� Xp,Ap−1.

Thanks to the specific construction, as well as the relatively simple multinomial resampling
scheme of Feynman-Kac IPS, Lemma A.1 provides a duality formula to connect both dis-
tributions and leads in particular to Proposition A.1. This latter result is crucial to prove the
consistency of our term by term estimator in Theorem 3.1.

In this section, a transition kernel denoted by the letter & is a Feynman-Kac kernel, mean-
ing that its total mass is not necessarily 1, and it can be expressed by the product of a positive
potential function and a Markov kernel. All transition kernels denoted by the letter " are
Markov kernels.

Notice that the transition from level ? − 1 to level ? of the IPS with its genealogy defined
in Section 2.2 can be expressed as

(Ap−1,Xp) ∼
#⊗
8=1

Φ?,# (Xp−1,3 (�8?−1,-
8
?))

with Φ?,# defined by

Φ?,# (xp−1,3 (08?−1, G
8
?)) = (?−1,# (xp−1,30

8
?−1) ×"?,# (G

08
?−1
?−1 ,3G

8
?) .

We define the transition of the original IPS with its genealogy by

M? (xp−1,3 (ap−1,xp)) :=
#∏
8=1

Φ?,# (xp−1,3 (08?−1, G
8
?))

and the potential function of the particle block of size @ by

G (@)
?−1(xp−1) :=<(xp−1) (�?−1,# )@ .

We denote the associated Feynman-Kac transition kernel

Q(@)? (xp−1,3 (ap−1,xp)) := G (@)
?−1(xp−1) ×M? (xp−1,3 (ap−1,xp)) .

Given ℓ [@ ]? ∈ (# )@ , 0̃ [@ ]
?−1 ∈ [# ]

@ and G̃ [@ ]? ∈ �
@
? , we define

M
0̃
[@ ]
?−1,ℓ

[@ ]
? ,G̃

[@ ]
?

? (xp−1,3 (ap−1,xp))

:=
∏

8∈[# ]\{ℓ1
? ,...,ℓ

@
? }

{
Φ?,# (xp−1,3 (08?−1, G

8
?))

}
× X

G̃
[@ ]
?

(3G ℓ
[@ ]
?

? ) × X0̃ [@ ]
?−1
(30ℓ

[@ ]
?

?−1)

the conditional transition for the original particle system given the coupled particle block
-̃
[@ ]
? = G̃

[@ ]
? at position ℓ [@ ]? with frozen genealogy �̃ [@ ]

?−1 = 0̃
[@ ]
?−1. In particular, we denote

M
ℓ
[@ ]
0 ,G̃

[@ ]
0

0 (3x0) :=


∏
8∈[# ]\{ℓ1

0 ,...,ℓ
@

0 }

[0(3G80)
 × XG̃ [@ ]0

(3G ℓ
[@ ]
0

0 ) .
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We also define

Q
(@)
? (xp−1,3 (0̃ [@ ]?−1, G̃

[@ ]
? )) :=<( [# ])⊗@ (30̃ [@ ]

?−1) &
⊗@
?,#
(G
0̃
[@ ]
?−1
?−1 ,3G̃

[@ ]
? ),

and

M
ℓ
[@ ]
?

?

(
(ap−1,xp),3 (0̃ [@ ]?−1, G̃

[@ ]
? )

)
:= X

0
ℓ
[@ ]
?

?−1

(30̃ [@ ]
?−1) X

G
ℓ
[@ ]
?
?

(3G̃ [@ ]? ).

Then we have the following pivotal duality formula, which is simply a generalization of
Lemma 4.1 in [13]. We will apply it in the proof of Proposition A.1 with @ = 2.

LEMMA A.1. For ? ≥ 1, @ ∈ [# ] and ℓ [@ ]? ∈ (# )@ , we have the following duality formula
between integral operators

Q(@)? (xp−1,3 (ap−1,xp)) M
ℓ
[@ ]
?

?

(
(ap−1,xp),3 (0̃ [@ ]?−1, G̃

[@ ]
? )

)
=Q

(@)
? (xp−1,3 (0̃ [@ ]?−1, G̃

[@ ]
? )) M

0̃
[@ ]
?−1,ℓ

[@ ]
? ,G̃

[@ ]
?

? (xp−1,3 (ap−1,xp)),

and

[⊗#0 (3x0) X
G
ℓ
[@ ]
0

0

(3G̃ [@ ]0 ) = [
⊗@
0 (3G̃

[@ ]
0 ) M

ℓ
[@ ]
0 ,G̃

[@ ]
0

0 (3x0) .

PROOF. Step 0 is clear. For ? ≥ 1, it suffices to check that the nonidentical parts are equal,
namely

G (@)
?−1(xp−1)

{
=∑
:=1

�?−1,# (G:?−1)
# <(xp−1) (�?−1,# )

X:

}⊗@
(30ℓ

[@ ]
?

?−1) "
⊗@
?,#
(G
0
ℓ
[@ ]
?

?−1
?−1 ,3G

ℓ
[@ ]
?

? )

M
ℓ
[@ ]
?

?

(
(ap−1,xp),3 (0̃ [@ ]?−1, G̃

[@ ]
? )

)
=Q

(@)
? (xp−1,3 (0̃ [@ ]?−1, G̃

[@ ]
? )) XG̃ [@ ]?

(3G ℓ
[@ ]
?

? ) X0̃ [@ ]
?−1
(30ℓ

[@ ]
?

?−1).

Fixing ℓ [@ ]? ∈ (# )@ and xp−1 ∈ �#?−1, consider a function F ∈ B1 ( [# ]@ × [# ]@ × �@? × �
@
?).

Moreover, let 0 [@ ] = (01, . . . , 0@) and G [@ ] = (G1, . . . , G@) denote generic variables belonging
respectively to [# ]@ and �@? . Then, we may write∫

<(xp−1) (�?−1,# )@
{
#∑
:=1

�?−1,# (G:?−1)
# <(xp−1) (�?−1,# )

X:

}⊗@
(30ℓ

[@ ]
?

?−1)

"
⊗@
?,#
(G
0
ℓ
[@ ]
?

?−1
?−1 ,3G

ℓ
[@ ]
?

? ) X
G
ℓ
[@ ]
?
?

(3G̃ [@ ]? ) X
0
ℓ
[@ ]
?

?−1

(30̃ [@ ]
?−1) F(0̃ [@ ]

?−1, 0
ℓ
[@ ]
?

?−1, G
ℓ
[@ ]
?

? , G̃
[@ ]
? )

=

∫
<( [# ])⊗@ (30 [@ ]) � ⊗@

?−1,# (G
0 [@ ]

?−1 ) "
⊗@
?,#
(G0 [@ ]?−1 ,3G

[@ ]) F(0 [@ ], 0 [@ ], G [@ ], G [@ ])

=

∫
<( [# ])⊗@ (30 [@ ]) & ⊗@

?,#
(G0 [@ ]?−1 ,3G

[@ ]) F(0 [@ ], 0 [@ ], G [@ ], G [@ ])

=

∫
<( [# ])⊗@ (30̃ [@ ]

?−1) &
⊗@
?,#
(G
0̃
[@ ]
?−1
?−1 ,3G̃

[@ ]
? ) XG̃ [@ ]?

(3G ℓ
[@ ]
?

? ) X0̃ [@ ]
?−1
(30ℓ

[@ ]
?

?−1) F(0̃ [@ ]
?−1, 0

ℓ
[@ ]
?

?−1, G
ℓ
[@ ]
?

? , G̃
[@ ]
? )

=

∫
Q
(@)
? (xp−1,3 (0̃ [@ ]?−1, G̃

[@ ]
? )) XG̃ [@ ]?

(3G ℓ
[@ ]
?

? ) X0̃ [@ ]
?−1
(30ℓ

[@ ]
?

?−1) F(0̃ [@ ]
?−1, 0

ℓ
[@ ]
?

?−1, G
ℓ
[@ ]
?

? , G̃
[@ ]
? ).
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This ends the proof of the duality formula. �

Let us recall (16) and (19):

(23) Λℓ
[2]
=
= =

∑
ℓ
[2]
0:=−1∈( (# )2)×=


=−1∏
?=0

_1? (�
ℓ
[2]
?+1
? , ℓ

[2]
? )

 =
∑

ℓ
[2]
=−1∈(# )2

Λ
ℓ
[2]
=−1
=−1 _

1
=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1).

with the convention Λ
ℓ
[2]
0

0 = 1. In fact, this gives another representation of the approximation
of the coalescent tree-based measures:

Γ1=,# (5 ⊗ 6) = W
#
= (1)2

#=−1

(# − 1)=+1
∑

ℓ
[2]
= ∈(# )2

Λℓ
[2]
=
= �1= (5 ⊗ 6) (-

ℓ
[2]
=
= ).

Recall that

G#=−1 := f (X0, . . . ,Xn−1,A0, . . . ,An−2) .

The upcoming result is useful in the proof of Lemma 4.1.

PROPOSITION A.1. UnderA1, for any ℓ [2]= ∈ (# )2, any coalescence indicator 1, and any
test functions 5 and 6 in B1 (�=), we have, for all = ≥ 1, that

E

[
W#= (1)2

#=−1

(# − 1)=+1
Λℓ
[2]
=
= �1= (5 ⊗ 6) (-

ℓ
[2]
=
= )

����� G#=−1

]
=

1
# (# − 1) Γ

1
=−1,#&

⊗2
=,#
�1= (5 ⊗ 6).

PROOF. By applying (23), we obtain

W#= (1)2
#=−1

(# − 1)=+1
Λℓ
[2]
=
= �1= (5 ⊗ 6) (-

ℓ
[2]
=
= )

= W#= (1)2
#=−1

(# − 1)=+1
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ℓ
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=−1∈(# )2

Λ
ℓ
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1
=−1(�

ℓ
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=

=−1, ℓ
[2]
=−1)�1= (5 ⊗ 6) (-

ℓ
[2]
=
= ) .

Since Λ
ℓ
[2]
=−1
=−1 is G#

=−1-measurable, it is sufficient to show that for each ℓ [2]
=−1 ∈ (# )

2, we have

E

[
<(Xn−1) (�=−1,# )2_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)�1= (5 ⊗ 6) (-

ℓ
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= )

����� G#=−1

]
=

1
# 2�1=−1&
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=,#
�1= (5 ⊗ 6) (-

ℓ
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=−1
=−1 ) .

(24)

Before starting our reasoning, for the sake of simplification, we remark that

_1=−1(�
ℓ
[2]
=

=−1, ℓ
[2]
=−1)�1= (5 ⊗ 6) (-

ℓ
[2]
=
= )

can be seen as a bounded measurable function of (An−1,Xn), rather than a measurable func-

tion of (- ℓ
[2]
=
= ,�

ℓ
[2]
=

=−1). With this in mind, for any test function

� ∈ B1 ( [# ]# × · · · × [# ]#︸                  ︷︷                  ︸
(=−1) times

×�#0 × · · · × �
#
=−1),



34

we have, by definition of Q(2)? (xp−1,3 (ap−1,xp)),

(25)

E
[
<(Xn−1) (�=−1,# )2_1=−1(�

ℓ
[2]
=

=−1, ℓ
[2]
=−1)�1= (5 ⊗ 6) (-
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=
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]
=

∫
Q(2)= (xn−1,3 (an−1,xn))_=−1(0ℓ

[2]
=

=−1, ℓ
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=−1)�1= (5 ⊗ 6) (G

ℓ
[2]
=
= )

� (a0:n−2,x0:n−1)`=−1(3a0:n−2,3x0:n−1),

where `=−1 denotes the measure corresponding to the underlying joint distribution of the IPS
from step 0 to step = − 1 with genealogy. Taking into account that

Mℓ
[2]
=
=

(
(an−1,xn),3 (0̃ [2]=−1, G̃

[2]
= )

)
= X

0
ℓ
[2]
=
=−1

(30̃ [2]
=−1) X

G
ℓ
[2]
=
=

(3G̃ [2]= )

is a Markov kernel, we can introduce it in the right-hand side of (25) to obtain

E
[
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=

∫
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ℓ
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=
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The construction of many-body Feynman-Kac models allows replacing (0ℓ
[2]
=

=−1, G
ℓ
[2]
=
= ) with

(0̃ [2]
=−1, G̃

[2]
= ) in the observation functions, as they are equal by definition. Hence, one has the

following equality:∫
Q(2)= (xn−1,3 (an−1,xn))Mℓ
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Now, the duality formula given in Lemma A.1 yields∫
Q(2)= (xn−1,3 (an−1,xn))Mℓ

[2]
=
=

(
(an−1,xn),3 (0̃ [2]=−1, G̃

[2]
= )

)
_=−1(0̃ [2]=−1, ℓ

[2]
=−1)�1= (5 ⊗ 6) (G̃

[2]
= )� (a0:n−2,x0:n−1)`=−1(3a0:n−2,3x0:n−1)

=

∫
Q
(2)
= (xn−1,3 (0̃ [2]=−1, G̃

[2]
= )) M

0̃
[2]
=−1,ℓ

[2]
= ,G̃

[2]
=

= (xn−1,3 (an−1,xn))

_=−1(0̃ [2]=−1, ℓ
[2]
=−1)�1= (5 ⊗ 6) (G̃

[2]
= )� (a0:n−2,x0:n−1)`=−1(3a0:n−2,3x0:n−1) .

In addition, since
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is a Markov kernel for any choice of (0̃ [2]
=−1, ℓ

[2]
= , G̃
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= ), we deduce that∫
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= (xn−1,3 (0̃ [2]=−1, G̃

[2]
= )) M

0̃
[2]
=−1,ℓ

[2]
= ,G̃

[2]
=

= (xn−1,3 (an−1,xn))

_=−1(0̃ [2]=−1, ℓ
[2]
=−1)�1= (5 ⊗ 6) (G̃

[2]
= )� (a0:n−2,x0:n−1)`=−1(3a0:n−2,3x0:n−1)

=

∫
Q
(2)
= (xn−1,3 (0̃ [2]=−1, G̃

[2]
= )) _=−1(0̃ [2]=−1, ℓ

[2]
=−1)�1= (5 ⊗ 6) (G̃

[2]
= )

� (a0:n−2,x0:n−1)`=−1(3a0:n−2,3x0:n−1) .
Next, let us recall that
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,

whence we get the equality concerning the operator �1=−1 . More precisely, if 1=−1 = 0, we
have
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Combining (26) and (27), we safely deduce that∫
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In conclusion, we have established that
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which terminates the verification of (24) and the proof of Proposition A.1.
�
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A.2. Some intuition. In general, the coupled particle block does not necessarily have the
parents-children relations. Let us see a representation of the duality formula given in Lemma
A.1 recursively applied in a mini IPS from level 0 to level 5 to some randomly chosen indices
ℓ
[2]
0:5 (see Figure 5).

step 0 step 1 step 2 step 3 step 4 step 5

coupled

original

FIG 5. An illustration of the duality formula recursively applied to a mini IPS of = +1 = 6 levels with 5 particles at
each level. Every straight black or dotted arrow within the original IPS represents a Markov transition "?,# and
the black twisted ones pointing to the particles in the coupled particle block represent the Feynman-Kac transition
kernels &?,# . The red dotted bending arrows are identities. The indices of the original particles in the coupled

particle block are ℓ [2]0 = (4,5), ℓ [2]1 = (2,4), ℓ [2]2 = (2,3), ℓ [2]3 = (3,5), ℓ [2]4 = (1,5) and ℓ [2]5 = (1,2).

However, we can get any ancestral relations or coalescent tree-based form by manipulating
the genealogical information encoded in the coupled genealogy. This is the essential idea we
used by introducing many-body Feynman-Kac models. To make it clearer, we consider an
event defined by

(28)
{
ℓ
[2]
?−2 = �̃

[2]
?−2, ℓ

1
?−1 = �̃

1
?−1 = �̃

2
?−1 ≠ ℓ

2
?−1, ℓ

[2]
? = �̃

[2]
?

}
.

On this event, we are able to track the coalescent tree-based form as in Figure 6. The coupled

-̃ 1
?−2 -̃ 1

?−1· · · -̃ 1
? -̃ 1

?+1 · · ·

-̃ 2
? -̃ 2

?+1 · · ·-̃ 2
?−2 -̃ 2

?−1· · ·

FIG 6. The coupled particle block tracked by the event defined by (28).

particle block and its genealogy are defined as the copies of certain particles and parents
indices in the associated original IPS. On one hand, we select certain events such that the
desired structure is trapped in the coupled particle block. On the other hand, we define the
estimator based on the information reflected in the original IPS as no additional randomness
are added by introducing the coupled particle block. Since their distributions are connected
by the duality formula, we can use the information coded in the original IPS to estimate the
measures corresponding to these coalescent tree-based particle blocks (see Figure 7).
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step 0 step 1 step 2 step 3 step 4 step 5

coupled

original

FIG 7. An illustration of the duality formula recursively applied to a mini IPS of = + 1 = 6 levels with 5 particles
at each level. Every straight black or dotted arrow within the original IPS represents a Markov transition "?,#
and the black ones within the coupled particle block represent the Feynman-Kac transition kernels &?,# . The
red dotted bending arrows are identities. The indices of the original particles in the coupled particle block are
ℓ
[2]
0 = (3,5), ℓ [2]1 = (3,4), ℓ [2]2 = (2,5), ℓ [2]3 = (1,2), ℓ [2]4 = (2,5) and ℓ [2]5 = (1,3).

The duality formula provides a way to touch the adaptive versions of the coalescent tree-
based measures Γ1= , i.e., all the Feynman-Kac transition kernels &? in the definition are re-
placed with the adaptive version &?,# . This is the idea underlying the construction of the
estimators Γ1

=,#
.

A.3. Connection with SMC. To conclude, let us say a few words about the behavior of
Γ1
=,#

. One remark is that, in general, this estimator is not unbiased in the ASMC framework.
This is a consequence of the adaptive parametrization, as witnessed by Lemma 4.2. On the
opposite, in a nonadaptive case (SMC), the estimation is unbiased, exactly as W#= is an unbi-
ased estimation of W= (see for example [11] Section 3.5.1). It turns out that the classical SMC
framework corresponds to the case where the function ℎ= in A2 is equal to zero, meaning
that &=,# =&= for all =. Thus, Lemma 4.1 and (15) give the following proposition.

PROPOSITION A.2. Assume A1-A2 and suppose that ℎ= ≡ 0 for all = ≥ 0. Then, for all
test functions 5 ,6 ∈ B1 (�=),

E
[
Γ1=,# (5 ⊗ 6)

]
= Γ1= (5 ⊗ 6).

In particular, we also have

E
[
W#= (1)2+ #= (5 )

]
= Var

[
W#= (5 )

]
.

In fact, the essential technical results in Section 4.4 and Section 4.5 only require A1. In
other words, A2 can be studied separately in order to adapt to applications not covered in
this article.

Another remark is about the difference between Γ1
=,#

and `1 as defined in Section 3.2. of
[16] in the nonadaptive context. However, since it is not straightforward to compare these
estimators that are extremely notation-heavy, we would just like to briefly and heuristically
mention that the main difference comes from the step where there is a coalescence, namely
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1? = 1. If we consider Figure 3 in Section 3.1, our estimator is not the most “precise” that one
could propose. Let us look at the case where

ℓ
[2]
0:6 = ((5,3), (4,3), (2,5), (2,4), (2,5), (1,3), (2,4)) .

For the terminal point - 4
3 , the conditional distribution of �4

2 is simply the categorical distri-
bution since - 4

3 is a terminal point. Roughly speaking, once all the genealogy of the terminal
points is calculated, one can deduce `1 . Hence, the take-home message is simple: if one is
interested in estimating Γ1= numerically, then the estimator `1 proposed in [16] is expected to
be more accurate, meaning that the variance should be smaller in general.

Nevertheless, as a theoretical tool, our estimator is easier to deal with in the adaptive
framework. Indeed, induction is highly involved in our proof of consistency, so estimators
that are stepwise easy to manipulate are required. Another difference is that we do not use
instrumental random variables such as  1 and  2 in the definition of `1 . This also simpli-
fies the analysis in an adaptive context where there is already more randomness than in a
nonadaptive context.

APPENDIX B: NUMERICAL EXPERIMENT

We provide in this section a numerical experiment based on the same toy example as the
one presented in Section 4.1 of [4]. In particular, this ensures that assumptions A1-A2 are
satisfied. Namely, consider a sequence of centered Gaussian target distributions ([=; 0 ≤ = ≤
50) on R10 given by

[= (G) ∝ exp
(
−1

2
〈
G,Σ−1

= G
〉)
.

Denote by Id the identity matrix on R10 and J the lower triangular matrix such that J8 9 = 1 for
1 ≤ 9 ≤ 8 − 1 ≤ 9. The covariance matrices are defined by

Σ= = L=LT
= , with L= =

(
10

(
1 − =

99

)
+ 1

10
=

99

)
Id + 1

2
=

99
J.

Thus, the initial distribution [0 consists in 10 centered and independent Gaussian compo-
nents with variance 10. As = grows, the covariance structure becomes more complicated. We
consider an implementation of SMC with (nonadaptive) potential functions

�= (G) := exp
(
−1

2

〈
G,

(
Σ−1
=+1 − Σ

−1
=

)
G

〉)
,

and some random walk Metropolis kernels "= such that, at each step, "= is reversible with
respect to [= . In this scenario, a popular choice for"= is based on the Gaussian proposal with
covariance matrix Σ= . This is the “limiting” (nonadaptive) scenario that we will consider
in the sequel. When one does not know the covariance matrices Σ= , a natural choice is to
use the estimated covariance matrix Σ#= . Our goal is to compare the respective behaviors
of adaptive SMC and nonadaptive SMC. In particular, we want to show that the Lee and
Whiteley variance estimator, in an adaptive context, goes to the asymptotic variance of the
“limiting” (nonadaptive) SMC when # grows.

For this, we consider the test function 5 : R10 3 (G (1) , G (2) , . . . , G (10) ) ↦→ G (1) ∈ R. Keep-
ing the notation of the previous sections, we illustrate the asymptotic variance estimators
#+ #=

(
5 − [#= (5 )

)
, which estimate the asymptotic variances of [#= (5 ) respectively for the

adaptive and nonadaptive SMC algorithms, see Figure 8. On the latter, the so-called refer-
ence value is the estimation of the theoretical asymptotic variance f2

[=
(5 −[= (5 )). This value

is estimated via Crude Monte Carlo through 2 × 103 independent runs of nonadaptive SMC



VARIANCE ESTIMATION IN ASMC 39

100500 1000 2000 5000 10000 20000
Number of particles

160

170

180

190

200

210

220

Es
tim

at
io

n 
of

 a
sy

m
pt

ot
ic 

va
ria

nc
e

Reference value
Limiting SMC with 95% CI
Adaptive SMC with 95% CI

(a) Variance estimation of [#= (5 ) with = = 10.
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(b) Variance estimation of [#= (5 ) with = = 50.

FIG 8. Variance estimators for adaptive and nonadaptive “limiting” SMC for = = 10 and = = 50 with # varying
from 100 to 2×104. We trace the variance estimators and its 95% confidential intervals based on 500 independent
runs of each algorithm. The reference values f2

[=
(5 − [= (5 )) are obtained through 2 × 103 independent runs of

nonadaptive “limiting” SMC with # = 5 × 103.

with # = 5× 103 (notice that, stricto sensu, it does of course not depend on N). At each itera-
tion of the algorithm, the random walk Metropolis kernel is applied 4 times in order to ensure
a certain level of acceptance.

It is clear that when # is relatively small, the variance estimations are biased. However,
as the number # of particles grows, we see that the behaviors of the adaptive and nonadap-
tive algorithms are similar in terms of asymptotic variance estimations. More precisely, the
overlaps of the 95% confidential intervals indicate that the adaptive SMC algorithm is indeed
very “close” to its nonadaptive “limiting” counterpart. As expected, both variance estimators
converge to the reference value f2

[=
(5 − [= (5 )) as # grows.

APPENDIX C: TRUNCATED VARIANCE ESTIMATORS

As mentioned in [16], their variance estimators degenerate when = is very large compared
to the number # of particles. Typically, no disjoint ancestral lines exist in such a particle
system. In this case, we recommend to use the same kind of fixed-lag variance estimators as
the ones proposed in [18]. More precisely, we only use part of the genealogy of the parti-
cle system (e.g., truncated at time = − � for a relatively small lag � ∈ N∗) to construct the
variance estimators. Hereafter, we provide a heuristic in order to justify the relevance of such
estimators in practice.
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In general, the application of SMC sampling on a large time scale requires some “forget-
ting” (mixing) properties of the underlying model. For example, in the toy example presented
in Appendix B, if the Metropolis kernel is implemented a large amount of times at each itera-
tion, the particles will somehow “forget” the dependence caused by the genealogy. Basically,
in terms of coalescent tree-based measures, Γ̄ (?)= would be very “close” to the disjoint ances-
tral lines based measure Γ̄ (∅)= . More concretely, if we look at the asymptotic variance f2

[=
, we

have

f2
[=
(5 ) =

=−�−1∑
?=0

(
Γ̄
(?)
= (5 ⊗2) − Γ̄ (∅)= (5 ⊗2)

)
︸                                   ︷︷                                   ︸

small by the “forgetting” properties of the model

+
=∑

?==−�

(
Γ̄
(?)
= (5 ⊗2) − Γ̄ (∅)= (5 ⊗2)

)
.

Accordingly, a natural idea is to estimate only the second part of the right hand side in order
to approximate the asymptotic variance. A truncated term by term estimator can therefore be
defined as

=∑
?==−�

(
Γ̄
(?)
=,#
(5 ⊗2) − Γ̄ (∅)

=,#
(5 ⊗2)

)
.

Unfortunately, this estimator is not always numerically stable, as it requires that disjoint
ancestral lines exist in the particle system from time 0 to time = − � . Following the same
mechanism as in the proofs of Proposition 3.1 and Proposition 4.2, we can show that

#

(
[#= (5 )2 − Γ̄

(∅,� )
=,#

(5 ⊗2)
)
≈

=∑
?==−�

(
Γ̄
(?)
=,#
(5 ⊗2) − Γ̄ (∅)

=,#
(5 ⊗2)

)
,

where, if �8= (� ) denotes the index of the ancestor of - 8= at step = −� ,

Γ̄ (∅,� )
=,#

(5 ⊗2) :=
#�−1

(# − 1)�+1
∑

�8= (� )≠�
9
= (� )

5 (- 8=) 5 (-
9
=) .

The estimator # ([#= (5 )2− Γ̄
(∅,� )
=,#

(5 ⊗2)) is more or less the one proposed in [18] and is indeed
a truncated version of #+ #= (5 ) proposed in [16]. We refer the interested reader to [18] for
theoretical results as well as numerical illustrations. When� is properly chosen, the fixed-lag
variance estimator is expected to be able to balance the memory and the degeneracy of the
genealogy of the particle system. However, finding a suitable � in a specific application is
highly nontrivial. As explained in [18], it is then natural to consider adaptive mechanisms to
determine � . Nevertheless, to the best of our knowledge, this is still an open problem, which
is beyond the scope of the present paper.
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